How Computers Really Do Arithmetic

Bruce Mags

why binary?

- addition
- multiplication
- division
- square roots
"Schoolboy" Arithmetic
- carry-propagate addition

$$
\begin{aligned}
& \text { decimal }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
3003 \\
+3000
\end{array} \\
& \begin{array}{l}
10^{n} 111100_{1}^{2} 1 \\
+10000011 \\
101000000
\end{array}
\end{aligned}
$$

"Schoolboy" Arithmetic

- carry-propagate addition
decimal

$$
\begin{array}{r}
n \text { digits } \\
\overbrace{1997}^{6} \\
+3003 \\
\hline 5000
\end{array}
$$

- carry-propagate adder-

where

$$
\begin{aligned}
s_{i} & =a_{i} \oplus b_{i} \oplus c_{i} \\
C_{i+1} & =a_{i} \cdot b_{i} \vee a_{i} c_{i} \vee b_{i} c_{i}
\end{aligned}
$$

Time?
n
why?

Carry-Look-Ahead Addition

$$
T_{0} \text { add }+\begin{array}{lllllll}
10111 & 101 \\
10000011 \\
\hline
\end{array}
$$

1) compute parity p_{i} at each bit position
$p_{i}=a_{i} \oplus b_{i} \quad 1$ time step

1	0	1	1	1	1	0	1
1	0	0	0	0	0	1	1
0	0	1	1	1	1	1	0

(compute all Pi values in parallel)

Carry-Look-Ahead Addition

$$
T_{0} \text { add }+\begin{array}{lllllll}
10111 & 101 \\
10000011 \\
\hline
\end{array}
$$

1) compute parity p_{i} at each bit position

$$
\left.\begin{array}{llllllll}
p_{i}=a_{i} & \oplus & b_{i} & 1 \text { time step } \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
10 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline
\end{array} \quad \begin{array}{c}
\text { compute all } \\
\text { values in parallel) }
\end{array}\right)
$$

2) compute carry-in C_{i} at each bit position

$$
\begin{array}{llllllll}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline 0 & 4 & \leftarrow & 4 & T & 4 & 1
\end{array}
$$ this notation mean?

Carry-Look-Ahead Addition

$$
T_{0} \text { add }+\begin{array}{lllllll}
10111 & 101 \\
10000011 \\
\hline
\end{array}
$$

1) compute parity p_{i} at each bit position

$$
\begin{array}{lllllll}
p_{i}=a_{i} & \oplus & b_{i} & 1 \text { time step } \\
10 & 1 & 1 & 1 & 1 & 0 & 1 \\
10 & 0 & 0 & 0 & 0 & 1 & \text { (compute all } p_{i} \\
\text { values in parallel) }
\end{array}
$$

2) compute carry-in C_{i} at each bit position

$$
\begin{array}{cccccccc}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline 0 & 5 & T & T & T & 4 & 1
\end{array}
$$ How? What does this notation mean?

3) compute $S_{i}=p_{i} \oplus C_{i}$ at each position

$$
1 \text { time step } \frac{(\oplus 1011111110}{01010000}
$$

Prefix Sums Calculation
Input: sequence $X=x_{n-1}, x_{n-2}, \ldots, x_{1}, x_{0}$ binary associative operator + (associative: $(x+y)+z=x+(y+z))$

Output: sequence $Y=y_{n-1}, y_{n-2}, \ldots, y_{1}, y_{0}$
where $y_{i}=\sum_{j=0}^{j} x_{j}$
Example: $+\equiv$ integer addition

$$
\begin{aligned}
& X=3,2,1,4,8,2 \\
& Y=2017151410
\end{aligned}
$$

Prefix Sums Calculation
Input: sequence $X=x_{n-1}, x_{n-2}, \ldots, x_{1}, x_{0}$ binary associative operator + (associative: $(x+y)+z=x+(y+z))$
Output: sequence $Y=y_{n-1}, y_{n-2}, \ldots, y_{1}, y_{0}$ where $y_{i}=\sum_{j=0}^{j} x_{j}$
Example: $+\equiv$ integer addition

$$
\begin{aligned}
& x=3, \\
& X=20 \\
& Y=20 \\
& 17 \\
& 15 \\
& 15 \\
& 14
\end{aligned} 10,4,8,2
$$

Other Associative Operators:
multiplication, min, max, and, or, left, right

$$
\operatorname{left}(a, b)=a \quad \operatorname{right}(a, b)=b
$$

Algorithm for Computing Prefix Sums (assume n is a power of 2)

Base case: $n=1, \quad y_{0}=x_{0}$
Recursive case: 1) let $z_{i}=x_{2 i+1}+x_{2 i}, 0 \leqslant i \leqslant \frac{n}{2}-1$

Algorithm for Computing Prefix Sums (assume n is a power of 2)

Base case: $n=1, \quad y_{0}=x_{0}$
Recursive case: 1) let $z_{i}=x_{2 i+1}+x_{2 i}, 0 \leqslant i \leqslant \frac{n}{2}-1$ ie. add pairs in $X:{ }_{x_{n-1}}^{x_{n-2}} \ldots x^{x_{3}} x_{2} \quad x_{1}$
$z_{\frac{n}{2}-1}$

2) recursively compute prefix sums
$W=\omega_{\frac{n}{2}-1}, \ldots, \omega_{1}, \omega_{0}$ for sequence Z

Algorithm for Computing Prefix Sums (assume n is a power of 2)

Base case: $n=1, \quad y_{0}=x_{0}$
Recursive case: 1) let $z_{i}=x_{2 i+1}+x_{2 i}, 0 \leqslant i \leqslant \frac{n}{2}-1$

2) recursively compute prefix sums

$$
W=w_{\frac{n}{2}-1}, \ldots, w_{1}, w_{0} \quad \text { for sequence } Z
$$

3) let

$$
y_{i}= \begin{cases}w_{\frac{i-1}{2}} & i \text { odd } \\ x_{i}+w_{i-1} & i \text { even, } i>0 \\ x_{0} & i=0\end{cases}
$$

ie. $\quad y=w_{\frac{n}{2}-1} \ldots, x_{4}+w_{1}, w_{1}, x_{2}+w_{0}, w_{0}, x_{0}$

Circuit Diagram

Circuit Diagram

Circuit Diagram

Time: $T(n)=\left\{\begin{array}{cc}1 & n=1 \\ 1+T\left(\frac{n}{2}\right)+1 & n>1\end{array}\right.$
Better
$=2 \log _{2} n+1$ than n.

Back to carry-lookahead addition

$$
10 \underbrace{\underbrace{1} \pm \mathbb{1}+1} \mid
$$

we want to replace each \leftarrow with a 1, and not sequentially!
What's the connection to prefix sums? define operator ${ }^{*}$ as follows

$*$	0	1	\leftarrow
0	0	0	0
1	1	1	1
\leftarrow	0	1	\leftarrow

now apply to

$$
\begin{gathered}
\text { now apply to } \\
x=10 \leftarrow \leftarrow(\leftarrow \leftarrow-1)) \\
(6 y=10111111
\end{gathered}
$$

Back to carry－lookahead addition

$$
10 \underbrace{\stackrel{1}{\leftarrow} \leftarrow \underset{\leftarrow}{\leftarrow} \leftarrow \mid}
$$

we want to replace each \leftarrow with a 1，and not sequentially！
What＇s the connection to prefix sums？ define operator $⿻ 丷 木$

$*$	0	1	\leftarrow
0	0	0	0
1	1	1	1
\leftarrow	0	1	\leftarrow

now apply to

$$
\begin{aligned}
& \text { now apply to } \\
& \left.\begin{array}{l}
x=1 \\
G_{y}=1
\end{array} 0<1 \leftarrow(\leftarrow-1)\right)
\end{aligned}
$$

we should verify that
＊is associative．Easy if $x=0,1$ ．

$$
\begin{array}{ccc}
x y z z & x *(y * z) & \frac{(x * y) * z}{0} \\
\hline 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\vdots & \vdots & \vdots
\end{array}
$$

Bottom Line:
Time to add 2 - -bit numbers $=$

$$
\underbrace{+1}_{\begin{array}{c}
\text { compute } C_{i}^{\prime} s \\
\left(\text { and } P_{i}^{\prime} s\right)
\end{array} \underbrace{2 \log _{2} n+1}_{\substack{\text { compute } \\
s_{i}=p_{i} \oplus c_{i}}}=2 \log _{2} n+2.1}=2
$$

processor	$\frac{n}{16}$	$\frac{2 \log _{2} n+2}{10}$
80186	16	10
Pentium	32	12
Alpha	64	14

More "Schoolboy" Arithmetic
MULTIPLICATION

Time? $\approx n^{2}$ using one-column-at-a-time addition

More "Schoolboy" Arithmetic
MULTIPLICATION

Time? $\approx n^{2}$ using one-column-at-a-time addition
$\approx n \cdot 2 \log _{2}(2 n)$ computing sequentially $a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, \ldots$ (with carry loak-a head)
$\approx \log _{2} n *\left(2 \log _{2}(2 n)+2\right)$ using tree
We can beat this!

Carry - Save Addition
Idea: Can convert sum of 3 numbers into a sum of 2 numbers in one step.

Carry - Save Addition
Idea: Can convert sum of 3 numbers into a sum of 2 numbers in one step.
example

Wallace Tree $a_{8} a_{7} a_{6} \quad a_{5} a_{4} \quad a_{3} \quad a_{2} a_{1} a_{0}$ depth of tree $\approx \log _{3 / 2} n$
(exactly 9 for $n=64$) total time

$$
z \log _{\frac{2}{2}} n+2 \log (2 n)+2
$$

time for $n=64: 23$
(vs. 14 to add!!)
"Schoolboy" Division
"Schoolboy" Division

Time to get n digits of precision:

- build table of multiples of divisor $1 * 15211,2 * 15211,3 * 15211, \ldots, 9 * 15211$
- n table lookups
- n subtractions $(\approx 2 \log n+2$ time each)

Total: $\neq n(2 \log n+2)$
(We can do better!!!)

A few words about subtraction

- it never costs more than addition

Almost all machines use 2's-complement representation of signed integers.
example: $\left.\begin{array}{ccccccc}-128 & +64 & +32 & +16 & +8 & +4 & +2+1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0\end{array} \right\rvert\,=-51$

A few words about subtraction

- it never costs more than addition

Almost all machines use 2's-complement representation of signed integers.
example: $\left.\quad \begin{array}{ccccccc}-128 & +64 & +32 & +16 & +8 & +4 & +2+1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0\end{array} \right\rvert\,=-51$
Assuming no overflows, addition is unchanged:

$$
\begin{array}{rllllllll}
11 & 0 & 0 & 1 & 0 & 1 & -51 \\
+ & 0 & 0 & 1 & 0 & 1 & 0 & 1 & +45 \\
\hline 1 & 1 & 1 & 1 & 0 & 1 & 0 & -6
\end{array}
$$

A few words about subtraction

- it never costs more than addition

Almost all machines use 2's-complement representation of signed integers.
example: $\left.\quad \begin{array}{ccccccc}-128 & +64 & +32 & +16 & +8 & +4 & +2+1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0\end{array} \right\rvert\,=-51$
Assuming no overflows, addition is unchanged:

$$
\begin{array}{rllllllll}
11 & 0 & 011 & 0 & 1 & -51 \\
+ & 0 & 0 & 1 & 0 & 1 & 0 & 1 & +45 \\
\hline 1 & 1 & 1 & 1 & 0 & 1 & 0 & -6
\end{array}
$$

To negate a number, invert all bits and then add 1 .

$$
\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 10 & -51 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Redundant Representation of Integers
Idea: Allow each digit to be $0,1,-1$
examples: $0101=5$

$$
10-1-1=5
$$

New addition algorithm:

1) add corresponding digits, no carries

$$
\begin{array}{rrrrrrrr}
01 & 01 & -1 & 0 & 1 & 1 & 75 \\
+\quad 1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 \\
\hline 1 & 1 & -1 & 1 & -2 & 0 & 2 & 1
\end{array}
$$

Redundant Representation of Integers
Idea: Allow each digit to be $0,1,-1$
examples: $0101=5$

$$
10-1-1=5
$$

New addition algorithm:

1) add corresponding digits, no carries

$$
\begin{array}{rrrrrrrr}
01 & 01 & -1 & 0 & 1 & 1 & 75 \\
+\quad 1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 \\
\hline 1 & 1 & -1 & 1 & -2 & 0 & 2 & 1
\end{array}
$$

2) remove +2 's by changing to 0 passing +1 left

$$
\begin{array}{ccccccc}
+1 \text { 1's } & 1 & 1 & -1 \\
0 & -1 & 0 & -1 & -2 & 1 & 1
\end{array}-1
$$

Now all digits are $-2,-1,0,1$ why?

Redundant Representation of Integers
Idea: Allow each digit to be $0,1,-1$
examples.

$$
\begin{array}{rrrrr}
0 & 1 & 0 & 1 & =5 \\
1 & 0 & -1 & -1 & =5
\end{array}
$$

New addition algorithm:

1) add corresponding digits, no carries

$$
\begin{array}{cccccccc}
01 & 0 & 1 & -1 & 0 & 1 & 1 & 75 \\
+ & 1 & 0 & -1 & 0 & -1 & 0 & 1
\end{array} 0
$$

2) remove +2 's by changing to 0 passing +1 left

$$
1 \begin{array}{llllll}
+1 ' s & 1 & 1 & -1 \\
0 & -1 & 0 & -1 & -2 & 1
\end{array} 1-1
$$

Now all digits are $-2,-1,0,1$ why?
3) remove -2 's by changing to 0 passing -1 left

We've added 2 n-bit numbers in 3 steps!

SRT Division Algorithm

SRT Division Algorithm
$1 0 1 1 \begin{array} { r r r r r r r r r r r r r } { 1 } & { 1 } & { 1 } & { - 1 } & { 1 } & { r ^ { 1 } - 1 } & { - 1 } & { 2 1 } \\ { - 1 } & { 0 } & { - 1 } & { - 1 } & { 1 } & { 0 } & { 1 } \end{array} \quad 1 1 \longdiv { 2 3 7 }$

| -10 | -1 | -1 |
| :---: | :---: | :---: | :---: |
| 100 | -1 | 1 |

(4) | -1 | 0 | -1 | -1 |
| :---: | :---: | :---: | :---: |
| -1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 2 |
| 1 | 0 | 0 | 0 |
| -1 | 0 | -1 | -1 |
| | 0 | -1 | -1 |

Rule: Each bit of quotient is determined by compaining first bit of divisor with first bit of dividend. Easy!
$22 r-5$
Time for n bits of precision in result?

$$
\approx \underbrace{3 \cdot n}+\underbrace{2 \log n+2}
$$

1 addition per bit
convert to standard representation by subtracting negative bits from positive.

Intel Pentium Division Error

- used essentially the same algorithm, but computed more than one bit of result in each step. Examined several leading bits of divisor and remainder and looked in table.
- table had several bad entries
- ultimately Intel offered to replace any defective chip, estimating their loss at $\$ 475$ million

$$
\sqrt{\text { square roots }}
$$

Who remembers the "schoolboy" method? Fortunately, calculators became cheap before I managed to learn it.

Computers use another technique:
Newton's Method
(also used in IBM 360 for division)

- finds x s.t. $f(x)=0$
- improves guess x_{i} by interpolation $x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$
- e.g. $f(x)=x^{2}-a$
(find \sqrt{a})
-egg. $f(x)=\frac{1}{x}-a$
$\left(\right.$ find $\left.\frac{1}{9}\right)$

Newton's Method -Division
deriving the recurrence:

$$
\begin{aligned}
& f(x)=\frac{1}{x}-a \quad f^{\prime}(x)=-\frac{1}{x^{2}} \\
& x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \\
& =x_{i}-\frac{\frac{1}{x_{i}}-a}{-\left(\frac{1}{x_{i}}\right)^{2}} \\
& =2 x_{i}-x_{i}^{2} a
\end{aligned}
$$

Note: Some functions f st. $f\left(\frac{1}{a}\right)=0$ don't work out. Egg.:

$$
\begin{aligned}
& f(x)=x-\frac{1}{a} \quad \Rightarrow \quad x_{i+1}=\frac{1}{a} \\
& f(x)=x a-1 \quad \Rightarrow \quad x_{i+1}=\frac{1}{a}
\end{aligned}
$$

$$
a=\frac{8}{15} \quad f(x)=\frac{1}{x}-a
$$

Error Analysis - Division
Assume $\frac{1}{2}<a<1$ so that $1<\frac{1}{a}<2$.
Let $\varepsilon_{i}=x_{i}-\frac{1}{a}$.
\mathcal{L} error after i iterations
Then $x_{i}=\frac{1}{a}+\varepsilon_{i}$, and

$$
\begin{aligned}
x_{i+1} & =2 x_{i}-a \cdot x_{i}^{2} \\
& =2 \cdot\left(\frac{1}{a}+\varepsilon_{i}\right)-a \cdot\left(\frac{1}{a}+\varepsilon_{i}\right)^{2} \\
& =\frac{1}{a}-a \varepsilon_{i}^{2} \\
\text { so } \varepsilon_{i+1} & =-a \varepsilon_{i}^{2} .
\end{aligned}
$$

Notice that $\varepsilon_{i+1}<0$, and $\left|\varepsilon_{i+1}\right|<\left|\varepsilon_{i}\right|^{2}$ (for $0<a<1$).

Convergence - Division

$$
\frac{1}{2}<a<1 \quad 1<\frac{1}{a}<2
$$

pick $x_{0}=\frac{3}{2}$ (initial guess)

$$
\begin{aligned}
\Rightarrow & \left|\varepsilon_{0}\right|<\frac{1}{2} \\
\Rightarrow & \left|\varepsilon_{1}\right|<\left(\frac{1}{2}\right)^{2} \\
& \left|\varepsilon_{i}\right|<\frac{1}{2^{2^{i}}}
\end{aligned}
$$

$$
\Rightarrow\left|\varepsilon_{1}\right|<\left(\frac{1}{2}\right)^{2},\left|\varepsilon_{2}\right|<\left(\left(\frac{1}{2}\right)^{2}\right)^{2}
$$

\therefore After i iterations, x_{i} is correct to 2^{i} bits

$$
x_{i}=1 . \underbrace{01011011101 \ldots}_{2^{i}}
$$

Total time?

$$
O\left(\log ^{2} n\right)
$$

except for possible error smaller in magnitude than max. contribution of all bits beyond 2^{i}.
(Adding $\left|\varepsilon_{i}\right|$ to X_{i} might change some of the leading 2^{i} bits, though.)

Newton's Method - Square Root

$$
f(x)=x^{2}-a \quad \frac{1}{2}<a<1, \frac{1}{2}<\sqrt{a}<1
$$

derivation:

$$
\begin{aligned}
x_{i+1} & =x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \quad x_{0}=\frac{3}{4} \\
& =x_{i}-\frac{x_{i}^{2}-a}{2 x_{i}} \\
& =\frac{1}{2} x_{i}+\frac{a}{2 x_{i}}
\end{aligned}
$$

error analysis: Let $x_{i}=\sqrt{a}+\varepsilon_{i} . \quad\left|\varepsilon_{0}\right|<\frac{1}{4}$

$$
\begin{aligned}
x_{i+1}= & \frac{1}{2}\left(\sqrt{a}+\varepsilon_{i}\right)+\frac{a}{2\left(\sqrt{a}+\varepsilon_{i}\right)} \\
= & \frac{1}{2}\left(\sqrt{a}+\varepsilon_{i}\right)+\frac{\sqrt{a}}{2}\left(\frac{1}{1+\frac{\varepsilon_{i}}{i}}\right) \\
= & \frac{1}{2}\left(\sqrt{a}+\varepsilon_{i}\right)+\frac{\sqrt{a}}{2}\left(1-\frac{\varepsilon_{i}}{\sqrt{a}}+\frac{\varepsilon_{i}^{2}}{a}-\overline{\}}\right) \\
& \left(\text { provided that }\left|\frac{\varepsilon_{i}}{\mid \sqrt{a}}\right|<1\right) \\
= & \left.\sqrt{a}+\frac{\varepsilon_{1}^{2}}{2 i a}-\cdots\right) \\
\therefore \mid & \left|\varepsilon_{i+1}\right|<\left|\varepsilon_{i}\right|^{2}
\end{aligned}
$$

Total time? $O\left(\log ^{3} n\right)$

