Algorithms in the Real World

Suffix Trees
Exact String Matching

• Given a text S of length m and pattern P of length n, “quickly” find an occurrence (or all occurrences) of P in S

• A Naïve solution:

 Compare P with $S[i...i+n-1]$ for all i --- $O(nm)$ time

• How about $O(n+m)$ time? (Knuth-Morris-Pratt)
 - $O(n)$ time to build a finite-state machine recognizing P (clever algorithm)
 - $O(m)$ time to run S through finite-state machine

• How about $O(m)$ preprocessing time and $O(n)$ search time?
Suffix Trees

• Preprocess the text in $O(m)$ time and search in $O(n)$ time

• Idea:
 - Construct a tree containing all suffixes of text along the paths from the root to the leaves
 - For search, just follow the appropriate path: if the pattern occurs in the text, then it is a prefix of some suffix of the text.
Suffix Trees

A suffix tree for the string $xabxa$

Notice no leaves for suffixes xa or a
A suffix tree for the string $xabxac$

Search for the string abx
Constructing Suffix trees

- Naive $O(m^2)$ algorithm to extend string
- For every i, add the suffix $S[i..m]$ to the current tree
Constructing Suffix trees

- Naive $O(m^2)$ algorithm to extend string
- For every i, add the suffix $S[i .. m]$ to the current tree
Constructing Suffix trees

- Naive $O(m^2)$ algorithm to extend string
- For every i, add the suffix $S[i .. m]$ to the current tree
Ukkonen’s linear-time algorithm

• We will start with an $O(m^3)$ algorithm and then give a series of improvements

• In stage i, we construct a suffix tree T_i for $S[1..i]$

• Building T_{i+1} from T_i naively takes $O(i^2)$ time because we insert each of the $i+1$ suffixes $S[j..i+1]$ ($1 \leq j \leq i+1$)

• Thus a total of $O(m^3)$ time
Going from \(T_i \) to \(T_{i+1} \)

• In the \(j^{th} \) substage of stage \(i+1 \), for \(j = 1 \) to \(i+1 \), we insert \(S[j..i+1] \) into \(T_i \). Let \(S[j..i] = \beta \).

• Three cases
 - **Rule 1**: The path \(\beta \) ends on a leaf \(\Rightarrow \) add \(S[i+1] \) to the label of the last edge
 - **Rule 2**: The path \(\beta \) continues with characters other than \(S[i+1] \) \(\Rightarrow \) create a new leaf node and split the path labeled \(\beta \)
 - **Rule 3**: A path labeled \(\beta S[i+1] \) already exists \(\Rightarrow \) do nothing.
Idea #1: Suffix Links

- Note that in each substage, we first search for some string in the tree and then insert a new node/edge/label.
- Can we speed up looking for strings in the tree?
- Note that in any substage, we look for a suffix of the string searched in the previous substage.
- Idea: Put a pointer from an internal node labeled $x\alpha$ to the node labeled α.
- Such a link is called a “Suffix Link”.
Idea #1: Suffix Links

Add the letter d to the string x a b x a c
(SS stands for substage)
Suffix Links - Bounding the time

• Steps in each substage
 - Go up 1 link to the nearest internal node
 - Follow a suffix link to the suffix node
 - Follow path link for the remaining string

• First and second steps happen once per substage.
• Suffix links ensure that in third step, each character in \(S[1..i+1] \) is used at most once to traverse a downward tree edge to an internal node. Hence \(O(m) \) time over stage.
• Our example: (x a)\textcolor{blue}{SS1} b (x a) \textcolor{blue}{SS4} c d
• Thus the total time per stage is \(O(m) \)
Maintaining Suffix Links

• When an internal node labeled $x\alpha$ is created (where x is a single character), in the following substage an internal node labeled α is created. E.g., “$x\, a$” followed by “a” in substages 4 and 5:

Why? If $x\alpha$ is a suffix and a prefix of suffix $x\alpha\gamma$, but $x\alpha S[i+1]$ isn’t a suffix, then α is also a suffix and a prefix of suffix $\alpha\gamma$, but $\alpha S[i+1]$ isn’t a suffix.

• When a new internal node is created, add a suffix link from it to the root, and if required, add a suffix link from its predecessor to it.
Going from $O(m^2)$ to $O(m)$

- Can we even hope to do better than $O(m^2)$?
- Size of the tree itself can be $O(m^2)$ as shown so far
- But notice that there are at most $2m$ edges! Why? (at most m leaves, and all internal nodes have at least two children)
 (still $O(m)$ even if we double count edges for all suffixes that are prefixes of other suffixes)
- Idea: represent labels of edges as intervals
- Can easily modify the entire process to work on intervals
Idea #2 : Getting rid of Rule 3

• Recall Rule 3: A path labeled $S[j .. i+1]$ already exists) do nothing.

• If $S[j .. i+1]$ already exists, then $S[j+1 .. i+1]$ exists too and we will again apply Rule 3 in the next substage

• Whenever we encounter Rule 3, this stage is over - skip to the next stage.
Idea #3: Fast-forwarding Rules 1 & 2

- Rule 1 applies whenever a path ends in a leaf.

- Note that a leaf node always stays a leaf node - the only change is to append the new character to its edge using Rule 1.

- An application of Rule 2 in substage j creates a new leaf node. This node is then accessed using Rule 1 in substage j in all the following stages.
Idea #3 : Fast-forwarding Rules 1 & 2

• Fast-forward Rule 1 and 2
 - Whenever Rule 2 creates a node, instead of labeling the last edge with only one character, implicitly label it with the entire remaining suffix

• Each leaf edge is labeled only once!
Loop Structure

- Rule 2 gets applied once per j (across all stages)
- Rule 3 gets applied once per i
Another Way to Think About It

S

↑j

insert finger
increment when S[j..i] not in tree (rule 2)

↑i

search finger
increment when S[j..i] in tree (rule 3)

1) insert S[j..n] into tree by branching at S[j..i-1]
2) create suffix pointer to new node at S[j..i-1] if there is one
3) use parent suffix pointer to move finger to j+1

Invariants:
1. j is never after i
2. S[j..i-1] is always in the tree
An example

Leaf edge labels are updated by using a variable to denote the start of the interval
Complexity Analysis

- Rule 3 is used only once in every stage
- For every j, Rule 1 & 2 are applied only once in the j^{th} substage of all the stages.
- Each application of a rule takes $O(1)$ steps
- Other overheads are $O(1)$ per stage

- Total time is $O(m)$
Extending to multiple texts

• Suppose we want to match a pattern with a dictionary of k texts of length m_1, \ldots, m_k

• Concatenate all the texts (separated by special characters) and construct a common suffix tree

• Time taken = $O(m_1 + \cdots + m_k)$

• Unnecessarily complicated tree; needs special characters
Multiple texts - Better algorithm

- First construct a suffix tree on the first text, then insert suffixes of the second text and so on.
- Each leaf node should store values corresponding to each text.
- $O(m_1 + \cdots + m_k)$ as before.
Longest Common Substring

• Find the longest string that is a substring of both text S_1 and text S_2
• Construct a common suffix tree for both texts
• Any node that has in its subtree at least one leaf node labeled by S_1 and at least one leaf node labeled by S_2 yields a common substring
• The “deepest” such node is the required substring
• Can be found in linear time by a tree traversal
Common substrings of M strings

- Given M strings of total length n, find for every k, the length l_k of the longest string that is a substring of at least k of the strings

- Construct a common suffix tree - $O(n)$ time
- For every internal node, find the number of distinctly labeled leaves in the subtree rooted at the node - might take $O(Mn)$ time - not linear!
- Report l_k by a single tree traversal
Lempel-Ziv compression

• Recall that at each stage, we output a pair \((p_i, l_i)\) where \(S[p_i..p_i+l_i] = S[i..i+l_i]\)

• Here's how to find all pairs \((p_i,l_i)\) in linear time

• Construct a suffix tree for \(S\)

• Let the position of each internal node be the minimum of the positions of all leaves below it - this is the first place in \(S\) where the node's label occurs.

• To compute \((p_i,l_i)\), search for the string \(S[i..m]\), but stop before reaching a node with position \(i\) or more. This gives us \(l_i\) and \(p_i\).

Example: for \(i=4\),

\[S[i..m] = x a c\]

Stop at node labeled \(x a\) with position 1

\((p_i,l_i) = (1,2)\)