COMPSCI630 Randomized Algorithms
 Assignment 1

Due Date: Mar. 11, 2016 in class.

Problem 1 (Problem 1.1 in Textbook). Suppose you are given a coin for which the probability of HEADS, say p, is unknown. How can you use the coin to generate unbiased (i.e. $\operatorname{Pr}[H E A D S]=$ $\operatorname{Pr}[T A I L S]=1 / 2$) coin flips? Give a scheme for which the expected number of flips of the biased coin for extracting one unbiased coin-flip is no more than $1 /[p(1-p)]$. (Hint: Consider two consecutive flips of the biased coin.)

Problem 2 (Card Collector). Suppose you are playing a collectible card game. There are n cards in the game to be collected and your goal is to collect all of them. You can buy a uniformly random card for one dollar, or you can exchange four arbitrary cards for a specific card. Suppose you first buy random cards without exchanging, let T_{m} be the amount of money you have spent when you have collected m distinct cards. In this problem to simplify calculation we assume for any integers $0<a<b$,

$$
\sum_{i=a}^{b} 1 / i=\log (b / a) .
$$

You can also look athttps://en.wikipedia.org/wiki/Geometric_distributionfor mean/variance of geometric distribution.
(a) Show $\mathbb{E}\left[T_{m}\right]=n \log \left(\frac{n}{n-m+1}\right)$.
(b) Suppose $m<\lfloor\alpha n\rfloor$ for $\alpha<1$, Show that $\operatorname{Var}\left[T_{m}\right] \leq m /(1-\alpha)^{2}$.
(c) Now you can use trading. Show that there exists a constant c such that with probability at least $3 / 4$, you can finish your collection after spending $\mathrm{cn} \pm O(\sqrt{n})$ dollars. Try to estimate c.

Problem 3 (Problem 4.8 in Textbook, rephrased). A decision problem is a problem whose output is either 0 or 1 (e.g. "Is this 3-SAT instance satisfiable?", "Is the MIN-CUT of this graph less than 5 ?"). For an input $x \in\{0,1\}^{n}$, suppose $P(x) \in\{0,1\}$ is the correct answer for the decision problem, and there is a randomized algorithm A that runs in polynomial time $T(n)$, and for any input x

$$
\operatorname{Pr}[A(x)=P(x)] \geq \frac{1}{2}+\frac{1}{q(n)},
$$

for a fixed polynomial $q(n)$. Show that there is also an algorithm B that runs in polynomial time, and

$$
\operatorname{Pr}[B(x)=P(x)] \geq 1-1 / 2^{n} .
$$

(Hint: Repeatedly run A, use concentration inequalities)
Problem 4 (Concentration of MAX CUT). Let G be an Erdös-Renyi random graph: for each pair (i, j), with probability $1 / 2$ it is an edge in G. All the edges are chosen independently. Let $c(G)$ be the capacity of the MAX-CUT in graph G. Show that

$$
\operatorname{Pr}\left[|c(G)-\mathbb{E}[c(G)]| \geq \lambda \sqrt{\frac{n(n-1)}{2}}\right] \leq 2 e^{-\lambda^{2} / 2}
$$

(Hint: use bounded difference/McDiarmid's inequality)

