COMPSCI630 Randomized Algorithms Assignment 2

Due Date: Apr. 1, 2016 in class.

Problem 1 (Communications). Alice has a unit vector $x \in \mathbb{R}^{n}$, Bob has a unit vector $y \in \mathbb{R}^{n}$. The two vectors either has an angle that is at most α, or at least β ($0 \leq \alpha<\beta \leq \pi$. They also share public bits of randomness.

Show that they can communicate $O\left(1 /(\beta-\alpha)^{2}\right)$ bits, and determine whether the angle is at most α or at least β with success probability at least $3 / 4$.

Note that communicating a real number (with reasonable precision) counts as $O(\log n)$ bits and is not allowed. (Hint: Use hyperplanes.)

Problem 2 (Graph sparsifier). Let C_{n} be a cycle with n vertices. That is, the graph has n edges: there is an edge between $(i, i+1)$ for $i=1,2, \ldots, n-1$ and there is also an edge $(n, 1)$.

Let P_{n} be a path with n vertices. That is, the graph has $n-1$ edges, there is an edge between $(i, i+1)$ for $i=1,2, \ldots, n-1$.
(a) Let $w_{C}(S, \bar{S})$ be the capacity of the cut in C_{n}, and $w_{P}(S, \bar{S})$ be the capacity of the cut in P_{n}. Show that for every cut (S, \bar{S}),

$$
w_{P}(S, \bar{S}) \leq w_{C}(S, \bar{S}) \leq 2 w_{P}(S, \bar{S})
$$

(b) Let \mathcal{L}_{C} be the Laplacian matrix of C, \mathcal{L}_{P} be the Laplacian matrix of P, show that there exists a vector $x \in \mathbb{R}^{n}$ such that

$$
x^{\top} \mathcal{L}_{C} x \geq n x^{\top} \mathcal{L}_{P} x .
$$

(So, P_{n} is a cut sparsifier of C_{n}, but not a spectral sparsifier.)
Problem 3 (Johnson-Lindenstraus for matrix operations). Suppose $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$. We would like to approximately compute $C=A B$. Let $U \in \mathbb{R}^{r \times s}$ (think of $s \ll r$) be a random matrix whose entries are drawn independently from standard Gaussian distribution $N(0,1)$. We will compute $\hat{C}=\frac{1}{s} A U U^{\top} B$.
(a) Show that \hat{C} can be computed within time $O((m+n) r s+s m n)$.
(b) Show that $\mathbb{E}[\hat{C}]=C$.
(c) Show that $\mathbb{E}\left[\|\hat{C}-C\|_{F}^{2}\right] \leq \frac{3\|A\|_{F}^{2}\|B\|_{F}^{2}}{s}$.

Hint: First bound variance when $s=1$, then use independence between columns of U. Some useful inequalities are

$$
\langle u, v\rangle \leq\|u\|\|v\|, \quad a \cdot b \leq \frac{a^{2}+b^{2}}{2}
$$

