COMPSCI630 Randomized Algorithms Assignment 2

Due Date: Apr. 1, 2016 in class.

Problem 1 (Communications). Alice has a unit vector $x \in \mathbb{R}^n$, Bob has a unit vector $y \in \mathbb{R}^n$. The two vectors either has an angle that is at most α , or at least β ($0 \le \alpha < \beta \le \pi$. They also share public bits of randomness.

Show that they can communicate $O(1/(\beta - \alpha)^2)$ bits, and determine whether the angle is at most α or at least β with success probability at least 3/4.

Note that communicating a real number (with reasonable precision) counts as $O(\log n)$ bits and is not allowed. (Hint: Use hyperplanes.)

Problem 2 (Graph sparsifier). Let C_n be a cycle with n vertices. That is, the graph has n edges: there is an edge between (i, i + 1) for i = 1, 2, ..., n - 1 and there is also an edge (n, 1).

Let P_n be a path with n vertices. That is, the graph has n-1 edges, there is an edge between (i, i+1) for i=1, 2, ..., n-1.

(a) Let $w_C(S, \bar{S})$ be the capacity of the cut in C_n , and $w_P(S, \bar{S})$ be the capacity of the cut in P_n . Show that for every cut (S, \bar{S}) ,

$$w_P(S, \bar{S}) \le w_C(S, \bar{S}) \le 2w_P(S, \bar{S}).$$

(b) Let \mathcal{L}_C be the Laplacian matrix of C, \mathcal{L}_P be the Laplacian matrix of P, show that there exists a vector $x \in \mathbb{R}^n$ such that

$$x^{\top} \mathcal{L}_C x \ge n x^{\top} \mathcal{L}_P x.$$

(So, P_n is a cut sparsifier of C_n , but not a spectral sparsifier.)

Problem 3 (Johnson-Lindenstraus for matrix operations). Suppose $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$. We would like to approximately compute C = AB. Let $U \in \mathbb{R}^{r \times s}$ (think of $s \ll r$) be a random matrix whose entries are drawn independently from standard Gaussian distribution N(0,1). We will compute $\hat{C} = \frac{1}{s}AUU^{\top}B$.

- (a) Show that \hat{C} can be computed within time O((m+n)rs + smn).
- (b) Show that $\mathbb{E}[\hat{C}] = C$.

- (c) Show that $\mathbb{E}[\|\hat{C} C\|_F^2] \leq \frac{3\|A\|_F^2 \|B\|_F^2}{s}$. Hint: First bound variance when s=1, then use independence between columns of U. Some useful inequalities are

$$\langle u, v \rangle \le ||u|| ||v||, \quad a \cdot b \le \frac{a^2 + b^2}{2}.$$