SQL: Recursion (and index in SQL)

Introduction to Databases
CompSci 316 Spring 2017
Announcements (Wed., Feb. 15)

• **Homework #2** due Friday 02/17
 • Except Problem 6 (Gradiance) and Problem X1 (non-Gradiance) : due on Thursday 02/23
 • Please submit on time – solutions will be posted by Saturday morning
 • Timeline is tight for the midterm

• **Midterm next Wednesday 02/22 in class**
 • Up to lecture 9 included
 • Will review some concepts/practice problems on Monday
Indexes

• An index is an auxiliary persistent data structure
 • Search tree (e.g., B^+-tree), lookup table (e.g., hash table), etc.
 ❦ More on indexes later in this course!

• An index on $R.A$ can speed up accesses of the form
 • $R.A = value$
 • $R.A > value$ (sometimes; depending on the index type)

• An index on $(R.A_1, ..., R.A_n)$ can speed up
 • $R.A_1 = value_1 \land \cdots \land R.A_n = value_n$
 • $(R.A_1, ..., R.A_n) > (value_1, ..., value_n)$ (again depends)

❖ Ordering or index columns is important—-is an index on $(R.A, R.B)$ equivalent to one on $(R.B, R.A)$?
❖ How about an index on $R.A$ plus another on $R.B$?
Examples of using indexes: 1/2

• SELECT * FROM User WHERE name = 'Bart';

• Without an index on User.name:
 • must scan the entire table if we store User as a flat file of unordered rows

• With an index on User.name:
 • go “directly” to rows with name='Bart'
Examples of using indexes: 2/2

• SELECT * FROM User, Member
 WHERE User.uid = Member.uid
 AND Member.gid = 'jes';

 Recall the semantic for SQL evaluation!

• With an index on Member.gid or (gid, uid):
 • find relevant Member rows directly

• With an index on User.uid:
 • for each relevant Member row, directly look up User rows
 with matching uid

• Without an index:
 • for each Member row, scan the entire User table for
 matching uid
 • Sorting could help
Creating and dropping indexes in SQL

CREATE [UNIQUE] INDEX indexname **ON**

tablename(columnname₁,...,columnnameₙ);

- With UNIQUE, the DBMS will also enforce that
 \{columnname₁, ..., columnnameₙ\} is a key of
 tablename

DROP INDEX indexname;

- Typically, the DBMS will automatically create
 indexes for PRIMARY KEY and UNIQUE
 constraint declarations
Choosing indexes to create

More indexes = better performance?

• Indexes take space
• Indexes need to be maintained when data is updated
• Indexes have one more level of indirection

Optimal index selection depends on both query and update workload and the size of tables

• Automatic index selection is now featured in some commercial DBMS
Next: Recursion!

http://xkcdsw.com/1105
A motivating example

Example: find Bart’s ancestors

“Ancestor” has a recursive definition

- X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor
Recursion in SQL

• SQL2 had no recursion
 • You can find Bart’s parents, grandparents, great grandparents, etc.
    ```sql
    SELECT p1.parent AS grandparent
    FROM Parent p1, Parent p2
    WHERE p1.child = p2.parent
    AND p2.child = 'Bart';
    ```
 • But you cannot find all his ancestors with a single query

• SQL3 introduces recursion
 • WITH clause
 • Implemented in PostgreSQL (common table expressions)
Ancestor query in SQL3

WITH RECURSIVE Ancestor(anc, desc) AS
(
 (SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)
)
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';
Fixed point of a function

• If $f: T \to T$ is a function from a type T to itself, a **fixed point** of f is a value x such that $f(x) = x$

• Example: What is the fixed point of $f(x) = x/2$?
 • 0, because $f(0) = 0/2 = 0$
To compute fixed point of a function f

• Start with a “seed”: $x \leftarrow x_0$

• Compute $f(x)$
 • If $f(x) = x$, stop; x is fixed point of f
 • Otherwise, $x \leftarrow f(x)$; repeat

• Example: compute the fixed point of $f(x) = x/2$
 • With seed 1: 1, 1/2, 1/4, 1/8, 1/16, … → 0

Doesn’t always work, but happens to work for us!
Fixed point of a query

• A query q is just a function that maps an input table to an output table, so a **fixed point** of q is a table T such that $q(T) = T$

To compute fixed point of q

• Start with an empty table: $T \leftarrow \emptyset$
• Evaluate q over T
 • If the result is identical to T, stop; T is a fixed point
 • Otherwise, let T be the new result; repeat

Starting from \emptyset produces the **unique minimal fixed point** (assuming q is monotone)
Finding ancestors

- WITH RECURSIVE
 Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))
- Think of the definition as Ancestor = q(Ancestor)
Intuition behind fixed-point iteration

• Initially, we know nothing about ancestor-descendant relationships

• In the first step, we deduce that parents and children form ancestor-descendant relationships

• In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendant relationships

• We stop when no new facts can be proven
Linear recursion

• With linear recursion, a recursive definition can make only one reference to itself

• Non-linear

 • WITH RECURSIVE Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))

• Linear

 • WITH RECURSIVE Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent)
 UNION
 (SELECT anc, child
 FROM Ancestor, Parent
 WHERE desc = parent))
Linear vs. non-linear recursion

• Linear recursion is easier to implement
 • For linear recursion, just keep joining newly generated Ancestor rows with Parent
 • For non-linear recursion, need to join newly generated Ancestor rows with all existing Ancestor rows

• Non-linear recursion may take fewer steps to converge, but perform more work
 • Example: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
 • Linear recursion takes 4 steps
 • Non-linear recursion takes 3 steps
 • More work: e.g., $a \rightarrow d$ has two different derivations
Mutual recursion example

• Table *Natural* (*n*) contains 1, 2, …, 100

• Which numbers are even/odd?
 • An odd number plus 1 is an even number
 • An even number plus 1 is an odd number
 • 1 is an odd number

WITH RECURSIVE *Even*(*n*) AS
 (SELECT *n* FROM Natural
 WHERE *n* = ANY(SELECT *n*+1 FROM *Odd*)),
RECURSIVE *Odd*(*n*) AS
 ((SELECT *n* FROM Natural WHERE *n* = 1)
 UNION
 (SELECT *n* FROM Natural
 WHERE *n* = ANY(SELECT *n*+1 FROM *Even*)))
Semantics of WITH

• WITH RECURSIVE R_1 AS Q_1, ..., RECURSIVE R_n AS Q_n

 • Q and Q_1, ..., Q_n may refer to R_1, ..., R_n

• Semantics

 1. $R_1 \leftarrow \emptyset$, ..., $R_n \leftarrow \emptyset$

 2. Evaluate Q_1, ..., Q_n using the current contents of R_1, ..., R_n:
 \[
 R_1^{\text{new}} \leftarrow Q_1, ..., R_n^{\text{new}} \leftarrow Q_n
 \]

 3. If $R_i^{\text{new}} \neq R_i$ for some i

 3.1. $R_1 \leftarrow R_1^{\text{new}}$, ..., $R_n \leftarrow R_n^{\text{new}}$

 3.2. Go to 2.

 4. Compute Q using the current contents of R_1, ... R_n and output the result
Computing mutual recursion

WITH RECURSIVE Even(n) AS
(SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
 UNION
(SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Even)))

- Even = ∅, Odd = ∅
- Even = ∅, Odd = {1}
- Even = {2}, Odd = {1}
- Even = {2}, Odd = {1, 3}
- Even = {2, 4}, Odd = {1, 3}
- Even = {2, 4}, Odd = {1, 3, 5}
- …
Fixed points are not unique

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>Bart</td>
</tr>
<tr>
<td>Homer</td>
<td>Lisa</td>
</tr>
<tr>
<td>Marge</td>
<td>Bart</td>
</tr>
<tr>
<td>Marge</td>
<td>Lisa</td>
</tr>
<tr>
<td>Abe</td>
<td>Homer</td>
</tr>
<tr>
<td>Abe</td>
<td>Abe</td>
</tr>
<tr>
<td>Abe</td>
<td>Bart</td>
</tr>
<tr>
<td>Abe</td>
<td>Lisa</td>
</tr>
<tr>
<td>Ape</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Bart</td>
</tr>
<tr>
<td>Ape</td>
<td>Lisa</td>
</tr>
<tr>
<td>Bogus</td>
<td>Bogus</td>
</tr>
</tbody>
</table>

Note how the bogus tuple reinforces itself!

• But if q is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with \emptyset

• Thus the unique minimal fixed point is the “natural” answer
Mixing negation with recursion

• If \(q \) is non-monotone
 • The fixed-point iteration may flip-flop and never converge
 • There could be multiple minimal fixed points—we wouldn’t know which one to pick as answer!

• Example: popular users (\(\text{pop} \geq 0.8 \)) join either Jessica’s Circle or Tommy’s (but not both)
 • Those not in Jessica’s Circle should be in Tom’s
 • Those not in Tom’s Circle should be in Jessica’s

 WITH RECURSIVE TommyCircle(uid) AS
 (SELECT uid FROM User WHERE \(\text{pop} \geq 0.8 \) AND uid NOT IN (SELECT uid FROM JessicaCircle)),

 RECURSIVE JessicaCircle(uid) AS
 (SELECT uid FROM User WHERE \(\text{pop} \geq 0.8 \) AND uid NOT IN (SELECT uid FROM TommyCircle))
Fixed-point iter may not converge

- WITH RECURSIVE TommyCircle(uid) AS
 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM JessicaCircle)),

RECURSIVE JessicaCircle(uid) AS
 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM TommyCircle))

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>121</td>
<td>Allison</td>
<td>8</td>
<td>0.85</td>
</tr>
</tbody>
</table>

```
uid   uid
142   142
121   121
```
Multiple minimal fixed points

- WITH RECURSIVE TommyCircle(uid) AS
 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM JessicaCircle)),

 RECURSIVE JessicaCircle(uid) AS
 (SELECT uid FROM User WHERE pop >= 0.8
 AND uid NOT IN (SELECT uid FROM TommyCircle))

<table>
<thead>
<tr>
<th>uid</th>
<th>name</th>
<th>age</th>
<th>pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>121</td>
<td>Allison</td>
<td>8</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Problem: What do we answer if someone asks whether 121 belongs to JessicaCircle?
Legal mix of negation and recursion

• Construct a dependency graph
 • One node for each table defined in WITH
 • A directed edge $R \rightarrow S$ if R is defined in terms of S
 • Label the directed edge “$−$” if the query defining R is not monotone with respect to S

• Legal SQL3 recursion: no cycle with a “$−$” edge
 • Called stratified negation

• Bad mix: a cycle with at least one edge labeled “$−$”
Stratified negation example

• Find pairs of persons with no common ancestors

WITH RECURSIVE Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent) UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)),

Person(person) AS
 ((SELECT parent FROM Parent) UNION
 (SELECT child FROM Parent)),

NoCommonAnc(person1, person2) AS
 ((SELECT p1.person, p2.person
 FROM Person p1, Person p2
 WHERE p1.person <> p2.person)
 EXCEPT
 (SELECT a1.desc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.anc = a2.anc))

SELECT * FROM NoCommonAnc;
Evaluating stratified negation

• The **stratum** of a node R is the maximum number of “—” edges on any path from R in the dependency graph
 • Ancestor: stratum 0
 • Person: stratum 0
 • NoCommonAnc: stratum 1

• Evaluation strategy
 • Compute tables lowest-stratum first
 • For each stratum, use fixed-point iteration on all nodes in that stratum
 • Stratum 0: Ancestor and Person
 • Stratum 1: NoCommonAnc

☞ Intuitively, there is **no negation within each stratum**
Datalog: Another query language for recursion

- Ancestor(x, y) :- Parent(x, y)
- Ancestor(x, y) :- Parent(x, z), Ancestor(z, y)

- Like logic programming
- Multiple rules
- Same “head” = union
- “,” = AND

- Same semantics that we discussed so far
 - not covered in detail in this class
Summary

• SQL3 WITH recursive queries
• Solution to a recursive query (with no negation): unique minimal fixed point
• Computing unique minimal fixed point: fixed-point iteration starting from \emptyset
• Mixing negation and recursion is tricky
 • Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 • Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)
• Another language for recursion: Datalog