SQL: Recursion (and review for midterm)

Introduction to Databases
CompSci 316 Spring 2017
Announcements (Mon., Feb. 20)

• Midterm next Wednesday 02/22 in class
 • Up to lecture 9 included
 • We will start at 4:40 pm, come early!
 • Open book, open notes, open written material
 • No electronic devices are allowed
 • No collaboration allowed

• Homework #2 Problem 6 (Gradiance) and Problem X1 (non-Gradiance): due on Thursday 02/23

• Project milestone 1 due next Monday 02/27
Today

• Finish recursion from Lecture 10
 • Negation and recursion
 • All lecture slides on recursion can be found from Lecture 10

• Practice a few problems for midterm
Practice Problems

- **Student**(sid, name)
- **Enrollment**(sid, cid, points)
- Find “names” of all students who never scored less than 90 points in any course

- Write query in RA
- Write query in SQL
 - EXCEPT
 - NOT EXISTS
 - ALL
 - NOT IN
RA (in class)

- Student(sid, name)
- Enrollment(sid, cid, points)
- Find names of all students who never scored less than 90 points in any course
SQL (in class) : EXCEPT

• Student(sid, name)
• Enrollment(sid, cid, points)
• Find names of all students who never scored less than 90 points in any course

```
SELECT name
FROM Student
EXCEPT
SELECT name
FROM Enrollment E, Student S
WHERE S.sid = E.sid
AND points < 90
```
SQL (in class) : NOT EXISTS

- Student(sid, name)
- Enrollment(sid, cid, points)
- Find names of all students who never scored less than 90 points in any course

```
SELECT name
FROM Student S
WHERE NOT EXISTS
  (SELECT *
   FROM Enrollment E
   WHERE S.sid = E.sid
   AND points < 90)
```
SQL (in class) : NOT IN

- Student(sid, name)
- Enrollment(sid, cid, points)
- Find names of all students who never scored less than 90 points in any course

```
SELECT name
FROM Student S
WHERE sid NOT IN
  (SELECT sid
   FROM Enrollment
   WHERE points < 90)
```
SQL (in class) : ALL

- Student(sid, name)
- Enrollment(sid, cid, points)
- Find names of all students who never scored less than 90 points in any course

```
SELECT name
FROM Student S
WHERE 90 <= ALL
    (SELECT points
     FROM Enrollment E
     WHERE S.sid = E.sid)
```
BCNF

• Are the following relations in BCNF given the dependencies? If not, decompose into BCNF.
 • \(R_1(A,C,B,D,E) \), \(A \rightarrow B \), \(C \rightarrow D \)

• Step 1: Non-trivial \(A \rightarrow B \) violates the condition as \(A \) is not a key. Decompose into \(AB \) and \(ACDE \).

• Step 2: Non-trivial \(C \rightarrow D \) violates the condition as \(C \) is not a key of \(ACDE \). Decompose into \(CD \) and \(ACE \). No more violation.
Chase

• Let $R(ABCD)$ be a relation with functional dependencies $A \rightarrow B, C \rightarrow D, AD \rightarrow C, BC \rightarrow A$
• Is the following a lossless-join decomposition of R into Boyce-Codd Normal Form (BCNF)?
 • $\{AB, AC, CD\}$?
 • Consider a tuple (a,b,c,d) after joining these three relations – need to show belonged to R
 • Could only come from some tuples in R of the form $(a,b,c_1,d_1), (a,b_2,c,d_2), \text{ and } (a_3,b_3,c,d)$, which project as (a,b) in AB, (a,c) in AC, \text{ and } (c,d) in CD.
 • $A \rightarrow B$ tells us $b_2=b$, \text{ and } $C \rightarrow D$ tells us $d_2=d$
 • Thus, the tuple (a,b_2,c,d_2) is really (a,b,c,d). Since we know the former is in R, the latter is in R.
 • Hence lossless – also check in BCNF – two-attribute relations are always in BCNF.
Chase

• Let \(R(ABCD) \) be a relation with functional dependencies \(A \rightarrow B, \ C \rightarrow D, \ AD \rightarrow C, \ BC \rightarrow A \)

• Is the following a lossless-join decomposition of \(R \) into Boyce-Codd Normal Form (BCNF)?

• \(\{AB, AD, BC, CD\} \)?

• Consider a tuple \((a,b,c,d)\) after joining these three relations – need to show belonged to \(R \)

• \((a,b,c,d)\) must have come from tuples \((a,b,c1,d1), (a,b2,c2,d), (a3,b,c,d3), \) and \((a4,b4,c,d)\) in \(R \).

• To prove \((a,b,c,d)\) is in \(R \), need to prove that it must be one of these tuples.

• However, the given FD's only allow us to infer \(b=b2 \) and \(d=d3 \).

• Not lossless.

• We can come up with a counterexample by substituting constants for the variables (or just keep \(a1, b2,.. \)), e.g., a relation \(R \) consisting of tuples \((1,2,5,6), (1,2,7,4), (8,2,3,4), \) and \((9,10,3,4)\). These, projected and joined, yield \((1,2,3,4)\), which is not in \(R \).
NULL and 3-valued logic

• A = NULL: wrong
• A IS NULL: correct

• NULL = ½, OR = max, AND = min, TRUE = 1, False = 0

• Given A = UNKNOWN, B = TRUE, C = FALSE

• (A AND B) OR C = (unknown AND True) OR False = Unknown OR False = Unknown

• Where clause selects only “True” evaluations