Quantitative Cleaning

Data Cleaning & Integration

CompSci 590.01 Spring 2017

Some contents were based on: Hellerstein’s QDB 2009 keynote slides

• Not published elsewhere, but nonetheless an excellent, well-cited survey
• Focuses on cleaning quantities (numbers)
 • Though some techniques are still applicable to non-numeric data; e.g. “counts” are quantities that can be derived from them
Biggest take-away points?

(For Jun:)

• Before you can talk about what’s dirty, you need to define what’s clean or “typical”
 • E.g., center/dispersion

• You need “robust” statistics
 • Or else your measures of what’s “typical” can be easily tainted by dirty data in the first place

• Friction works better than constraint enforcement, which often invites “spurious integrity”
Atypical = “far from the center”

- Center: mean
- Dispersion: variance (or standard deviation)

- Implicit assumption: normal distribution (a.k.a. Gaussian, bell curve)
 - Knowing just mean and variance, Gaussian is your “maximum entropy distribution”
Traditional center/dispersion

- Ages of employees: [12, 13, 14, 21, 22, 26, 33, 35, 36, 37, 39, 42, 45, 47, 54, 57, 61, 68, 450]

Mean: 58.52632
Variance: 9252.041
Robust center/dispersion

- Ages of employees: [12, 13, 14, 21, 22, 26, 33, 35, 36, 37, 39, 42, 45, 47, 54, 57, 61, 68, 450]
Two measures compared

- Standard deviation (square root of variance):
 \[\sqrt{\frac{1}{n} \sum_{i=1}^{n} (k_i - \mu)^2} \], where \(\mu = \frac{1}{n} \sum_{i=1}^{n} k_i \)

- Median absolute deviation (MAD):
 \[\text{median}_i \{ |k_i - \text{median}_i\{k_i\}| \} \]
Subtler problems

• Ages of employees: [12, 13, 14, 21, 22, 26, 33, 35, 36, 37, 39, 42, 45, 47, 54, 57, 61, 110, 450]

Masking: magnitude of some outlier masks others, making them harder to identify
How robust statistics help

• Ages of employees: [12, 13, 14, 21, 22, 26, 33, 35, 36, 37, 39, 42, 45, 47, 54, 57, 61, 110, 450]

Cope with multiple outliers and large-magnitude outliers
How robust is robust?

• “Breakdown point” measures the robustness of an estimator
 • Proportion of “dirty” data the estimator can handle before giving an arbitrarily erroneous result
 • Think adversarially
• Best possible breakdown point is 50%
 • Beyond 50% “noise,” what’s the “signal”?
Some breakdown points

• Mean?
 • \(1/n\): just one outlier is enough!

• Standard deviation?
 • Also \(1/n\)

• Mode?
 • Depends on the frequency of the mode

• Median?
 • 50%, the best you can hope for
 • It does NOT mean you need to tweak 50% of the data to change the median
Robust centers

- Ages of employees: [12, 13, 14, 21, 22, 26, 33, 35, 36, 37, 39, 42, 45, 47, 54, 57, 61, 110, 450]
- Median: 37
- \(k \% \) trimmed mean
 - Remove lowest/highest \(k \% \) values (12, 13, 110, 450)
 - Compute mean on the remainder (37.933)
- \(k \% \) winsorized mean
 - Remove lowest/highest \(k \% \) values (12, 13, 110, 450)
 - Replace low removed with lowest remaining (14, 14)
 - Replace high removed with highest remaining (61, 61)
 - Compute mean on the result (37.842)
Robust dispersion

• MAD

• IQR (interquartile range)
 • Difference between 25% and 75% quartiles
 • [12, 13, 14, 21, 22, 26, 33, 35, 36, 37, 39, 42, 45, 47, 54, 57, 61, 110, 450]
 • Note for symmetric distributions, MAD is IQR/2

• Or just do $k\%$ trimming or winsorization and then compute standard deviation
Fit using robust center/dispersion

• Gaussian
 • MAD: 75 percentile, so re-scale standard deviation in terms of MAD
 • \(\hat{\sigma} = 1.4826 \cdot \text{MAD} \)
 • Re-center at median and off you go

• What if data is not Gaussian?
 • Transform so the remaining error (or “residual”) is
Computing order-based stats

• SQL sucks; use user-defined functions
• Sorting is always an option
• Linear-time median (or selection in general)
 • Pivot, with median of medians
• One-pass algorithms?
 • Randomized algorithms that use sampling or sketches (e.g., range counting with CountMin by Cormode & Muthukrishnan, J. Algo. 2005)
 • Deterministic algorithms that produce approximate answers (e.g., Greenwald & Khanna, SIGMOD 2001; Shrivastava et al., SenSys 2004)
Moving to multiple dimensions

• Intuition: multivariate Gaussian
 • Center: multi-dimensional mean
 • Dispersion?

Probability density

Equi-probable contours
Multivariate dispersion

- Sample covariance matrix Σ: $d \times d$ for N d-dimensional points
 \[
 \Sigma_{ij} = \frac{1}{N-1} \sum_{k=1}^{N} (x_{ik} - \bar{x}_i)(x_{jk} - \bar{x}_j)
 \]
 - Symmetric
 - Diagonal stores variance per dimension
 - Off-diagonal reflects covariance between dimensions
 - Captures the scale and orientation of the Gaussian

- Mahalanobis distance between point x and mean μ:
 \[
 \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)}
 \]
 - Works in the space scaled and rotated by Σ
Robust multivariate outliers

- Derive order-based statistics based on Mahalanobis distance
- Apply robust stats to individual dimensions, rescale, and then trim using Euclidean distance
- Iteratively delete max-Mahalanobis points, recompute center/dispersion, and repeat
- Define new robust estimators for mean and covariance
 - E.g., MCD (minimum covariance determinant): pick a subset of points that minimize the determinant of Σ
Resampling techniques

• Start with the dataset \mathcal{D} with outliers
• Repeatedly take samples in a controlled fashion, and compute summary statistics
• Combine computed statistics from the samples carefully to produce a better estimate (than computing it directly from \mathcal{D})
• Standard techniques:
 • Bootstrap: draw $|\mathcal{D}|$ items with replacement; compute statistics; rinse and repeat
 • Jackknife: leave out one item at a time; compute statistics; rinse and repeat
Frequency outliers

• Scenario 1: find potential keys (attributes that uniquely identify rows)
 • Compute *unique row ratio*: # distinct values vs. # rows
 • Not robust to a few values with high frequency
 • More robust: *unique value ratio*: # “unique” values vs. # distinct values

• Scenario 2: find attribute values with unusually high frequencies
Computational techniques

• # of distinct values in one pass
 • FM Sketch (Flajolet & Martin, JCSS 1985)

• Heavy hitters in one pass
 • Extension of streaming majority (Misra & Gries, 1982)
 • Or just CountMin Sketch (Cormode & Muthukrishnan, J. Algo. 2005)
FM (Flajolet-Martin) sketch

Let \(\text{Tail}_0(h(x)) = \# \text{ of trailing consecutive 0's} \)

- \(\text{Tail}_0(101001) = 0 \)
- \(\text{Tail}_0(101010) = 1 \)
- \(\text{Tail}_0(001100) = 2 \)
- \(\text{Tail}_0(101000) = 3 \)
- \(\text{Tail}_0(000000) = 6 \)
FM sketch

• Maintain a value K (max 0-tail length)
• Initialize K to 0
• For each new value
 • Compute $\text{Tail}_0(h(x))$
 • Replace K with this value if it is greater than K
• $F' = 2^K$ is an estimate of F, the true number of distinct elements

• K require very little space to store
Rough intuition

If we have F distinct elements, we’d expect

• $F/2$ of them to have $\text{Tail}_0(x) = 0$
• $F/4$ of them to have $\text{Tail}_0(x) = 1$
• ...
• $F/2^i$ of them to have $\text{Tail}_0(x) = i$
• ...

So $F' = 2^K$ is pretty good guess of F

But this is not very accurate!

• Use lots of independent sketches and let them vote
Summary

• We didn’t discuss lots of topics in this survey
 • Other distributions like Zipfian
 • Other non-parametric methods for distance/density-based outlier detection
 • Time series data
 • Interface design

• Stats and computer science both have a lot to offer to the problem of data quality
 • Challenge is to learn stuff outside our comfort zone!

• On Thursday, we will look at one specific case of quantitative data “cleaning” in a fairly complex application setting