Qualitative Cleaning: Data Profiling

Data Cleaning & Integration
CompSci 590.01 Spring 2017

Some contents were based on: Abedjan, Golab, and Naumann’s ICDE 2016 tutorial slides
Before you clean data...

You need to define what’s clean or “typical”

• Sometimes you can get these from domain experts or prior knowledge

• Other times you need to discover them from data itself ⇒ “data profiling” helps

 • We have seen how statistics help in quantitative data cleaning earlier in class

 • Now let’s turn to how logic helps for qualitative data cleaning
A real-life example (project idea)

• An actively updated database of Duke MBB stats
• Already very clean (manually curated), but still not without quality issues
Take-away points

• Sometimes you cannot tell whether a cell is dirty or not without looking at other cells
 • In the same row,
 • In the same column of different rows,
 • Or in different tables!

• “Constraints” help a lot
 • Specified by logic and checked by database queries
 • But lots of possibilities
 • Can we spot them automatically from data?
Keys

A set of attributes K is a **key** for a relation R if

- No two tuples in R agree on the values of K
 - That is, K uniquely identifies a tuple in R (we call K a “superkey” in this case)
- No proper subset of K satisfies the above condition
 - That is, K is minimal

Examples

- In *game*, $\{\text{gid}\}$ is a key, and so is $\{\text{date}\}$
- In *pgstats*, $\{\text{gid}, \text{pid}\}$ is a key
Functional dependencies

- A **functional dependency (FD)** has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

\[
\begin{array}{|c|c|c|}
\hline
X & Y & Z \\
\hline
a & b & c \\
\hline
a & b & ? \\
\hline
\end{array}
\]

Must be b \quad Could be anything

- Note that K is superkey $\iff K \rightarrow \text{all attributes of } R$ (and assuming no duplicate rows)
FD examples

• In game:
 • $gid \rightarrow$ all attributes
 • $date \rightarrow gid$
 • $season, oid \rightarrow score$?
 • $season, score, opp_score, loc \rightarrow oid$?

• Question: are FDs discovered from a particular instance “reliable”?

Note:

• It suffices to list FDs of the form $X \rightarrow A$, where is A is a singleton and $X \cap A = \emptyset$

• Also, if you list $X \rightarrow A$, there is no need to list $Y \rightarrow A$ where $Y \supseteq X$
Checking FDs by SQL

$X_1 X_2 \cdots X_k \rightarrow A$ where X_1, \ldots, X_k, A are attributes

```sql
SELECT COUNT(DISTINCT($X_1, \ldots, X_k$)),
       COUNT(DISTINCT($X_1, \ldots, X_k, A$))
FROM R;
```

• FD holds if the two counts are the same
 • What if they are close? You have an “approximate” FD, still useful to data cleaning
• Many other formulations are possible
Efficient evaluation

• Sort or hash by the attributes
 • No need to carry along unnecessary attributes
• If data doesn’t fit in memory, use multiple passes
 • ... to merge (if sort)
 • ... to partition (if hash)
• Can you check multiple FDs with one sort?
• Can you leverage previous sorts?
Specialized algorithms

 - “Stripped partitions” of equivalence classes of tuples
 - Bottom-up lattice exploration

- **FastFDs**: Wyss et al. *DaWaK* 2001
 - “Agree/difference” sets from pairs of tuples
 - DFS search
TANE: stripped partitions

- π_X: partition tuples of R by a set of attributes X
 - $\pi_{X \cup Y}$ is a refinement of both π_X and π_Y
 - Assuming data fits in memory, refinement requires one pass
 - Start with singleton X’s; combine to get larger X’s as needed
 - $X \rightarrow A$ holds iff $|\pi_{X \cup A}| = |\pi_X|$

- Optimization: stripped partitioning $\hat{\pi}_X$: throw away partitions in π_X with just a single tuple
 - Singleton partitions won’t lead to violations
 - $X \rightarrow A$ holds iff $|\hat{\pi}_{X \cup A}| - |\hat{\pi}_{X \cup A}| = |\hat{\pi}_X| - |\hat{\pi}_X|$, where $|\cdot|$ is the total number of tuples covered by all (non-stripped) partitions
TANE: search strategy

- Organize attribute subsets into a lattice
- Search bottom-up
 - To ensure minimality
- At each node X, check $X \rightarrow A$ for each edge to $X \cup A$ in the next level
 - Unless, e.g., we already know $Y \rightarrow A$ for some $Y \subset X$
 (other pruning conditions are also checked)
FastFDs: difference sets

“Data-driven”

• For each pair of tuples in R, compute the set of attributes for which they differ; let D_R be the set of all such sets

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>a_1</td>
<td>b_1</td>
<td>c_1</td>
<td>d_1</td>
</tr>
<tr>
<td>t_2</td>
<td>a_2</td>
<td>b_1</td>
<td>c_1</td>
<td>d_2</td>
</tr>
<tr>
<td>t_3</td>
<td>a_1</td>
<td>b_2</td>
<td>c_2</td>
<td>d_1</td>
</tr>
</tbody>
</table>

$D_R = \{AD, BC, ABCD\}$

$D^A_R = \{D, BCD\}$

• Let $D^A_R = \{D \setminus A | D \in D_R \land A \subseteq D \}$

• $X \rightarrow A (A \cap X = \emptyset)$ holds iff X intersects with every set in D^A_R
FastFDs: efficient computation

All-pairs comparison is expensive

- Instead of computing difference sets, compute “agree” sets and complement them
- Use stripped partitions to generate agree sets
 - All-pairs comparison only needed within each partition, not across partitions

Searching for FDs in D_R is expensive

- Use DFS (depth-first traversal)
- Adjust attribute ordering according to how many difference sets each covers

Definition 2.2. A CFD Π on R is a pair (Π, t), where:

- $X, Y \subseteq R$; $X \subseteq Y$ is an FD, called embedded FD in the context of CFD;
- T_p is called a pattern tableau of Π, where for every attribute $A \in X \setminus Y$ and each pattern tuple $t_p \in T_p$, either $t_p[A]$ is a constant in the domain $\text{Dom}(A)$ of A, or $t_p[A]$ is a wild card '-'.
Inclusion dependencies

• Given lists of attributes X and Y from relations R_1 and R_2, an inclusion dependency $R_1[X] \subseteq R_2[Y]$ means that for every R_1 tuple, its combination of X values must appear as Y values in some R_2 tuple
 • Referential integrity (aka foreign key) constraint in databases is a special (but common) case

• Examples
 • $game.oid$ references $opponent.oid$
 • $pgstats.gid$ references $game.gid$
 • $pgstats.pid$ references $player.pid$
Checking inclusion by SQL

\[R_1 [X_1 X_2 \cdots X_k] \subseteq R_2 [Y_1 Y_2 \cdots Y_k] \] where \(X_i \)'s and \(Y_i \)'s are attributes

\[
\text{SELECT} \ * \ \text{FROM} \ R_1 \\
\text{WHERE} \ (X_1, X_2, \ldots, X_k) \ \text{NOT IN} \\
(\text{SELECT} \ Y_1, Y_2, \ldots, Y_k \ \text{FROM} \ R_2) ;
\]

• Efficient evaluation?
 • Again, sort or hash
 • Sort (with duplicate elimination) + merge (with early termination) for unary inclusion dependencies (*SPIDER*): Bauckmann et al., *ICDE Workshops*, 2006
Specialized algorithms

- Divide-and-conquer (*BINDER*): Papenbrock et al. *PVLDB* 2015
MIND: inverted lists

- Build inverted lists
- Given attribute A, intersect all lists containing A
- For any surviving attribute B we have $A \subseteq B$
- For multiple attributes, proceed bottom-up
 - Because $R_1[X_1, X_2] \subseteq R_2[Y_1, Y_2]$ implies $R_1[X_1] \subseteq R_2[Y_1]$ and $R_1[X_2] \subseteq R_2[Y_2]$
BINDER: divide and conquer

- Use hash partitioning to avoid comparison across partitions
- Validation skips attribute pairs for which inclusion already fails
More constraints

• **Conditional FDs (CFDs):** FDs + additional constraints on value combinations specified by patterns

• **Denial constraints (DCs):** universally quantified first-order logic

• Matching dependencies, metric/numeric FDs, editing/fixing/Sherlock rules, ...
 • More in Ilyas & Chu survey, *FnTdb* 2015
CFDs

\[(R: X \rightarrow Y, T_p) \]

- \(X \rightarrow Y \) is a standard FD (“embedded” in the CFD)
- \(T_p \) is a “pattern tableau” with attributes of \(X \) and \(Y \), where each row is a pattern with constant values and wildcards (“-”)

For \((R: X \rightarrow Y, T_p) \) to hold

- If two tuples match on \(X \), check each pattern—if they match the pattern’s LHS, they must also match its RHS, and with each other
- Suffices to consider only CFDs with a singleton RHS
CFD example

\(T_p \) for the CFD (\(\{\text{name, type, country}\} \rightarrow \{\text{price, tax}\}, T_p \))

<table>
<thead>
<tr>
<th>name</th>
<th>type</th>
<th>country</th>
<th>price</th>
<th>tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>clothing</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>book</td>
<td>France</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>UK</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- **Embedded FD needs to hold**
 - for clothing, for UK, and for book in France
- **For book in France, tax must be 0**

Table 2.2: CFD example

<table>
<thead>
<tr>
<th>TID</th>
<th>name</th>
<th>type</th>
<th>country</th>
<th>price</th>
<th>tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Harry Potter</td>
<td>book</td>
<td>France</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Harry Potter</td>
<td>book</td>
<td>France</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Harry Potter</td>
<td>book</td>
<td>France</td>
<td>10</td>
<td>0.05</td>
</tr>
<tr>
<td>4</td>
<td>The Lord of the Rings</td>
<td>book</td>
<td>France</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>The Lord of the Rings</td>
<td>book</td>
<td>France</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Algorithms</td>
<td>book</td>
<td>USA</td>
<td>30</td>
<td>0.04</td>
</tr>
<tr>
<td>7</td>
<td>Algorithms</td>
<td>book</td>
<td>USA</td>
<td>40</td>
<td>0.04</td>
</tr>
<tr>
<td>8</td>
<td>Armani suit</td>
<td>clothing</td>
<td>UK</td>
<td>500</td>
<td>0.05</td>
</tr>
<tr>
<td>9</td>
<td>Armani suit</td>
<td>clothing</td>
<td>UK</td>
<td>500</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>Armani slacks</td>
<td>clothing</td>
<td>UK</td>
<td>250</td>
<td>0.05</td>
</tr>
<tr>
<td>11</td>
<td>Armani slacks</td>
<td>clothing</td>
<td>UK</td>
<td>250</td>
<td>0.05</td>
</tr>
<tr>
<td>12</td>
<td>Prada shoes</td>
<td>clothing</td>
<td>USA</td>
<td>200</td>
<td>0.05</td>
</tr>
<tr>
<td>13</td>
<td>Prada shoes</td>
<td>clothing</td>
<td>USA</td>
<td>200</td>
<td>0.05</td>
</tr>
<tr>
<td>14</td>
<td>Prada shoes</td>
<td>clothing</td>
<td>France</td>
<td>500</td>
<td>0.05</td>
</tr>
<tr>
<td>15</td>
<td>Spiderman</td>
<td>DVD</td>
<td>UK</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Star Wars</td>
<td>DVD</td>
<td>UK</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Star Wars</td>
<td>DVD</td>
<td>UK</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Terminator</td>
<td>DVD</td>
<td>France</td>
<td>25</td>
<td>0.08</td>
</tr>
<tr>
<td>19</td>
<td>Terminator</td>
<td>DVD</td>
<td>France</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Terminator</td>
<td>DVD</td>
<td>France</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

Can you detect any violations?
CFD discovery

• Added challenge: too many possibilities for the pattern tableau

• Overall strategy
 • Build on FD discovery algorithms
 • A pattern in the tableau is similar to an association rule (Agrawal et al. SIGMOD 1993 and VLDB 1994) with 100% confidence
Optimal CFD tableau problem

• For a pattern:
 • LS (local support) = fraction of tuples matching its LHS
 • E.g., LS of book/France rule is 5/20
 • LC (local confidence) = max fraction of tuples matching its LHS that can be kept without violating the pattern
 • E.g., LC of book/France rule is 4/5

• Tableau as a whole:
 • GS (global support) = fraction of tuples matching any pattern’s LHS
 • GC (global confidence) = max fraction of matching tuples that can be kept without violating any pattern

• Problem: given the embedded FD, find the smallest tableau with minimum GS and GC
 • NP-complete and hard to approximate
An alternative problem

Given the embedded FD, find the smallest tableau with minimum GS and LC (for each pattern)

• A variant of the partial set cover problem

• Generate all possible patterns with high enough LC

• Greedily choose the pattern with highest marginal improvement to GS
DCs

• Each DC has form $\forall t_1, t_2, t_3, \ldots \in R: \neg (P_1 \land P_2 \land \cdots)$, where each predicate P_i either compares two attribute values of the quantified tuples, or compares one attribute value against a constant
 • Violation = finding a combination of tuples for which all predicates are true

• FDs and CFDs are all special cases of DCs

• Examples
 • $\forall t \in pgstats: \neg (t.fg3 > t.fg3a)$
 • $\forall t_1, t_2 \in R: \neg (t_1.name = t_2.name \land t_1.type = t_2.type \land t_1.country = t_2.country = \text{“UK”} \land t_1.price \neq t_2.price)$
DC discovery

Conceptually extends FastFDs’s difference set idea

• Enumerate all possible predicates \mathcal{P}

• Build an evidence set, where each element is a subset of \mathcal{P} that are satisfied by some tuple pair

• If some subset of \mathcal{P} overlaps with every element of the evidence set, then we have a DC
Summary and thoughts

• With a huge space of constraints to explore, even a small database can give you headaches
• Can’t we use sampling or approximation algorithms to speed up search for constraints?
• Next week, we will start looking at how to “repair” data given the constraints