You can see your Exam 1… on Gradescope

- Solutions posted – regrades til March 3
 - Ask for regrade on gradescope
- Try working problem you missed first
 - Then look at solution

- Once you think you understand
 - Get blank sheet of paper – try again
- Understand all solutions

Announcements

- Reading and RQ due next time
- Assignment 5 out today
- APT 4 due today, APT 5 out
- Lab 6 this week
 - Read APT Anagramfree and Assignment 5 before going to lab!

- Today:
 - Focus on problem solving with sets, list comprehensions

Build a list from another list

- Given a list of numbers, create a second list of every number squared.

  ```python
  nums = [8, 3, 5, 4, 1]
  sqnums = []
  for v in nums:
    sqnums.append(v*v)
  print sqnums
  ```


 `[64, 9, 25, 16, 1]`
List Comprehension - Short cut way to build a list

- Take advantage of patterns, make a new list based on per element calculations of another list.

- Format:
 \[<\text{expression with variable}> \text{ for } <\text{variable}> \text{ in } <\text{old list}>]\)

- Example:
 \[
 \text{nums} = [8, 3, 5, 4, 1] \\
 \text{sqnums} = [v*v \text{ for } v \text{ in nums}]
 \]

These result in the same list!

\[
\text{nums} = [8, 3, 5, 4, 1]
\]

1) \[
\text{sqnums} = [] \\
\text{for } v \text{ in nums:} \\
\text{sqnums}.append(v*v)
\]

2) \[
\text{sqnums} = [v*v \text{ for } v \text{ in nums}]
\]

Examples of List Comprehensions

bit.ly/101s17-0228-1

\[
\text{nums} = [4, 3, 8] \\
\text{x} = [v \text{ for } v \text{ in nums}] \\
\text{x} = [2 \text{ for } v \text{ in nums}] \\
\text{x} = \text{sum}([v*2 \text{ for } v \text{ in nums}]) \\
\text{x} = [v+5 \text{ for } v \text{ in nums}][1] \\
\text{x} = [\text{nums}[\text{len(nums)}-i-1] \text{ for } i \text{ in range(len(nums))}] \\
\]

Creating a list with just the even numbers

\[
\text{nums} = [8, 3, 5, 4, 1] \\
\text{evennums} = [] \\
\text{for } v \text{ in nums:} \\
\text{if } v \% 2 == 0: \\
\text{evennums}.append(v) \\
\text{print evennums}
\]

\[8, 4\]
List Comprehension with Filtering

• Create list and use “if” to filter out elements to the list
• Format:
 \[<\text{expression with variable}> \text{ for } <\text{variable}> \text{ in } <\text{old list}> \text{ if } <\text{filter with variable}> \]

• Example: `nums = [8, 3, 5, 4, 1]`
 `evennums = [v for v in nums if v%2==0]`

More on List Comprehensions

`names = [“Bo”, “Moe”, “Mary”, “Aaron”, “Joe”]`

• What is the list for the following:
 1) `[w for w in names if w.endswith(“e”)]`
 2) `[w for w in names if w.lower()[0] > ‘c’]`
 3) `[j+1 for j in range(20) if (j%3) == 0]`
 4) `[i*2 for i in [j+1 for j in range(20) if (j%3) == 0] if i*i > 19]`

More on List Comprehensions

```python
fruit = ['kiwi', 'plum', 'orange', 'lemon', 'banana']
```

• Problem: Given a list of strings, return the longest string. If there are more than one of that length, return the first such one.

 Use a list comprehension for this problem

Richard Stallman

• MacArthur Fellowship (Genious grant)
• ACM Grace Murray Hopper award
• Started GNU – Free Software Foundation (1983)
 – GNU Compiler Collection
 – GNU Emacs
Python Sets

- Set – unordered collection of distinct items
 - Unordered – can look at them one at a time, but cannot count on any order
 - Distinct - one copy of each
- Operations on sets:
 - Modify: add, clear, remove
 - Create a new set: difference(-), intersection(&), union (|), symmetric_difference(^)
 - Boolean: issubset <=, issuperset >=
- Can convert list to set, set to list
 - Great to get rid of duplicates in a list

List vs Set

- List
 - Ordered, 3rd item, can have duplicates
 - Example: \[4, 6, 2, 4, 5, 2, 4\]
- Set
 - No duplicates, no ordering
 - Example: \[set(x)\]
 - 5
 - 4
- Both
 - Add, remove elements
 - Iterate over all elements

Summary (from wikibooks)

- set1 = set()
- set1.add("cat")
- set1.update(["dog", "mouse"])
- set1.remove("cat")
- print set1
- for item in set1:
 print item
- print "Item count ":, len(set1)
- issmapy = len(set1) == 0
- set1 = set1 & set2
- set3 = set1 | set2
- set5 = set1 - set3
- set6 = set1 ^ set2
- issubset = set1 <= set2
- issuperset = set1 >= set2
- set7 = set1.copy()
- set8.clear()

Creating and changing a set

- colorList = ["red", "blue", "red", "red", "green"]
- colorSet = set(colorList)
- smallList = list(colorSet)
- colorSet.clear()
- colorSet.add("yellow")
- colorSet.add("red")
- colorSet.add("blue")
- colorSet.add("yellow")
- colorSet.add("purple")
- colorSet.remove("yellow")

What is the value of smallList and colorSet after this code executes?
Set Operations

UScolors = set(['red', 'white', 'blue'])
dukeColors = set(['blue', 'white', 'black'])
print dukeColors.union(U(colors)
print dukeColors | UScolors
print dukeColors.intersection(U(docolors
print dukeColors & UScolors
print dukeColors.difference(Ucolors)
print Ucolors & dukeColors
print dukeColors ^ UScolors
print UScolors ^ dukeColors

Set Examples

bit.ly/101s17-0228-4

poloClub = set(['Mary', 'Laura', 'Dell'])
rugbyClub = set(['Fred', 'Sue', 'Mary'])
Questions:
print [w for w in poloClub.intersection(rugbyClub)]
print poloClub.intersection(rugbyClub)
print [w for w in poloClub.union(rugbyClub)]
print poloClub.union(rugbyClub)

Set Examples (cont)

lista = ['apple', 'pear', 'fig', 'orange', 'strawberry']
listb = ['pear', 'lemon', 'grapefruit', 'orange']
listc = [x for x in lista if x in listb]
listd = list(set(lista)|set(listb))

Assignment 5 - Hangman

• Guess a word given the number of letters.
 – Guess a letter
 – see if it is in the word and where.

• Demo

• Will start in lab
words = ["creation","sentence","reaction","sneak","star","rats","snake"]

Returns: 4

“star” “rats” → both have letters: a r t s
“snake” “sneak”
“creation” “reaction”
“sentence”