
CPS 223

Linear Programming Duality,

Reductions, and Bipartite Matching

Yu Cheng

Linear Programming Duality

Example linear program

maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

• We make reproductions of
two paintings

• Painting 1 sells for $30, painting 2
sells for $20

• Painting 1 requires 4 units of blue, 1
green, 1 red

• Painting 2 requires 2 blue, 2 green, 1
red

• We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0 2

0

4

6

8

2 4 6 8

optimal solution:

x=3, y=2

Proving optimality

maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

Recall: optimal solution:

x=3, y=2

Solution value = 9+4 = 13

How do we prove this is

optimal (without the

picture)?

Proving optimality…

maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

We can rewrite the blue

constraint as

2x + y ≤ 8

If we add the red constraint

x + y ≤ 5

we get

3x + 2y ≤ 13

Matching upper bound!

(Really, we added .5 times the

blue constraint to 1 times the

red constraint)

Linear combinations of constraints

maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

b(4x + 2y ≤ 16) +

g(x + 2y ≤ 8) +

r(x + y ≤ 5)

=

(4b + g + r)x +

(2b + 2g + r)y ≤

16b + 8g + 5r

4b + g + r must be at least 3

2b + 2g + r must be at least 2

Given this, minimize 16b + 8g + 5r

Using LP for getting the best

upper bound on an LP
maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

minimize 16b + 8g + 5r

subject to

4b + g + r ≥ 3

2b + 2g + r ≥ 2

b ≥ 0

g ≥ 0

r ≥ 0

the dual of the original program

• Duality theorem: any linear program has the same
optimal value as its dual!

Another View

• Suppose Vince wants to buy paints from us.

• Pay $b for a unit of blue, $g for green, $r for red.

• We can choose to sell the paints, or produce
paintings and sell the paintings, or both.

• Painting 1: 4 blue, 1 green, 1 red, sells for $30

• Painting 2: 2 blue, 2 green, 1 red, sells for $20

• We have 16 units blue, 8 green, 5 red

b ≥ 0

g ≥ 0

r ≥ 0

4b + g + r ≥ 3

2b + 2g + r ≥ 2

Another View

• Suppose Vince wants to buy paints from us.

• Pay $b for a unit of blue, $g for green, $r for red.

• We can choose to sell the paints, or produce
paintings and sell the paintings, or both.

• Vince pays $(16b + 8g + 5r) in total.

• We have 16 units blue, 8 green, 5 red

b ≥ 0

g ≥ 0

r ≥ 0

4b + g + r ≥ 3

2b + 2g + r ≥ 2

Using LP for getting the best

upper bound on an LP
maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

minimize 16b + 8g + 5r

subject to

4b + g + r ≥ 3

2b + 2g + r ≥ 2

b ≥ 0

g ≥ 0

r ≥ 0

dualprimal

Duality

• Weak duality:

Optimal value of primal ≥ Optimal value of dual

(when primal LP is max and dual LP is min)

• We can make $13 if we produce paintings

Vince should pay at least as much

• Strong Duality

Optimal value of primal = Optimal value of dual

Vince is a good negotiator

Using LP for getting the best

upper bound on an LP
maximize 3x + 2y

subject to

4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

minimize 16b + 8g + 5r

subject to

4b + g + r ≥ 3

2b + 2g + r ≥ 2

b ≥ 0

g ≥ 0

r ≥ 0

dualprimal

Reductions

NP (“nondeterministic polynomial time”)

• Recall: decision problems require a yes or no
answer

• NP: the class of all decision problems such that
if the answer is yes, there is a simple proof of
that

• E.g., “does there exist a set cover of size k?”

• If yes, then just show which subsets to choose!

• Technically:

– The proof must have polynomial length

– The correctness of the proof must be verifiable in
polynomial time

“Easy to verify” problems: NP

• All decision problems such that we

can verify the correctness of a

solution in polynomial time.

Prover
Verifier: OK, that

is indeed a

solution.

input

NP-hardness
• A problem is NP-hard if it is at least as hard as all

problems in NP

• So, trying to find a polynomial-time algorithm for it is
like trying to prove P=NP

• Set cover is NP-hard

• Typical way to prove problem Q is NP-hard:
– Take a known NP-hard problem Q’

– Reduce it to your problem Q
• (in polynomial time)

• E.g., (M)IP is NP-hard, because we have already
reduced set cover to it
– (M)IP is more general than set cover, so it can’t be easier

Reductions

• Sometimes you can reformulate problem A in
terms of problem B (i.e., reduce A to B)

– E.g., we have seen how to formulate several
problems as linear programs or integer programs

• In this case problem A is at most as hard as
problem B

– Since LP is in P, all problems that we can formulate
using LP are in P

– Caveat: only true if the linear program itself can be
created in polynomial time!

Independent Set

• In the below graph, does there exist a subset of
vertices, of size 4, such that there is no edge between
members of the subset?

Independent Set

• In the below graph, does there exist a subset of
vertices, of size 4, such that there is no edge between
members of the subset?

• General problem (decision variant): given a graph and
a number k, are there k vertices with no edges
between them?

• NP-complete

Set Cover (a computational problem)

• We are given:

– A finite set S = {1, …, n}

– A collection of subsets of S: S1, S2, …, Sm

• We are asked:

– Find a subset T of {1, …, m} such that Uj in TSj= S

– Minimize |T|

• Decision variant of the problem:

– we are additionally given a target size k, and

– asked whether a T of size at most k will suffice

• One instance of the set cover problem:

S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 =
{1,3,6}, S4 = {2,3,5}, S5 = {4,5,6}, S6 = {1,3}

Visualizing Set Cover
• S = {1, …, 6}, S1 = {1,2,4}, S2 = {3,4,5}, S3 =

{1,3,6}, S4 = {2,3,5}, S5 = {4,5,6}, S6 = {1,3}

1

3

6 5

4

2

Reducing independent set

to set cover

• In set cover instance (decision variant),
– let S = {1,2,3,4,5,6,7,8,9} (set of edges),

– for each vertex let there be a subset with the vertex’s
adjacent edges: {1,4}, {1,2,5}, {2,3}, {4,6,7}, {3,6,8,9}, {9},
{5,7,8}

– target size = #vertices - k = 7 - 4 = 3

• Claim: answer to both instances is the same (why??)

, k=4
1

2
3

4
5

6

7 89

Reducing independent set

to set cover

• In set cover instance (decision variant),
– let S = {1,2,3,4,5,6,7,8,9} (set of edges),

– for each vertex let there be a subset with the vertex’s
adjacent edges: {1,4}, {1,2,5}, {2,3}, {4,6,7}, {3,6,8,9}, {9},
{5,7,8}

– target size = #vertices - k = 7 - 4 = 3

• Claim: answer to both instances is the same (why??)

• So which of the two problems is harder?

, k=4
1

2
3

4
5

6

7 89

Reductions:
To show problem Q is easy:

Q
Problem known to be

easy (e.g., LP)

reduce

To show problem Q is (NP-)hard:

Q
Problem known to be

(NP-)hard

(e.g., set cover, (M)IP)

reduce

Polynomial time reductions

A

reduction
B

Weighted Bipartite Matching

Weighted bipartite matching

• Match each node on the left with one node on the
right (can only use each node once)

• Minimize total cost (weights on the chosen edges)

3

4

5

2

1

6

7

3

1

Weighted bipartite matching…
• minimize cij xij

• subject to

• for every i, Σj xij = 1

• for every j, Σi xij = 1

• for every i, j, xij ≥ 0

• Theorem [Birkhoff-von Neumann]: this linear program
always has an optimal solution consisting of just
integers
– and typical LP solving algorithms will return such a solution

• So weighted bipartite matching is in P

Weighted bipartite matching

• Match each node on the left with one node on the
right (can only use each node once)

• Minimize total cost (weights on the chosen edges)

3

4

5

2

1

6

7

3

1

