CPS 223

Linear Programming Duality,
 Reductions, and Bipartite Matching

Yu Cheng

Linear Programming Duality

Example linear program

- We make reproductions of two paintings
maximize $3 x+2 y$

subject to

$$
4 x+2 y \leq 16
$$

$$
x+2 y \leq 8
$$

- Painting 1 sells for $\$ 30$, painting 2 sells for $\$ 20$
- Painting 1 requires 4 units of blue, 1 green, 1 red
$x+y \leq 5$
$x \geq 0$
$y \geq 0$
- Painting 2 requires 2 blue, 2 green, 1 red
- We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

maximize $3 x+2 y$
subject to

$$
\begin{gathered}
4 x+2 y \leq 16 \\
x+2 y \leq 8 \\
x+y \leq 5 \\
x \geq 0 \\
y \geq 0
\end{gathered}
$$

Proving optimality

maximize $3 x+2 y$
subject to
$4 x+2 y \leq 16$ $x+2 y \leq 8$
$x+y \leq 5$
$x \geq 0$
$y \geq 0$

Recall: optimal solution:

$$
x=3, y=2
$$

Solution value $=9+4=13$

How do we prove this is optimal (without the picture)?

Proving optimality...

maximize $3 x+2 y$
subject to

$$
\begin{gathered}
4 x+2 y \leq 16 \\
x+2 y \leq 8 \\
x+y \leq 5 \\
x \geq 0 \\
y \geq 0
\end{gathered}
$$

We can rewrite the blue constraint as

$$
2 x+y \leq 8
$$

If we add the red constraint
$x+y \leq 5$
we get

$$
3 x+2 y \leq 13
$$

Matching upper bound!
(Really, we added . 5 times the blue constraint to 1 times the red constraint)

Linear combinations of constraints

maximize $3 x+2 y$
subject to

$$
\begin{gathered}
4 x+2 y \leq 16 \\
x+2 y \leq 8 \\
x+y \leq 5 \\
x \geq 0 \\
y \geq 0
\end{gathered}
$$

$b(4 x+2 y \leq 16)+$ $g(x+2 y \leq 8)+$ $r(x+y \leq 5)$
$=$
$(4 b+g+r) x+$
$(2 b+2 g+r) y \leq$
$16 b+8 g+5 r$
$4 b+g+r$ must be at least 3
$2 b+2 g+r$ must be at least 2
Given this, minimize $16 b+8 g+5 r$

Using LP for getting the best upper bound on an LP

maximize $3 x+2 y$
subject to
$4 x+2 y \leq 16$
$x+2 y \leq 8$
$x+y \leq 5$
$x \geq 0$
$y \geq 0$
minimize $16 b+8 g+5 r$ subject to

$$
\begin{gathered}
4 b+g+r \geq 3 \\
2 b+2 g+r \geq 2 \\
b \geq 0 \\
g \geq 0 \\
r \geq 0
\end{gathered}
$$

the dual of the original program

- Duality theorem: any linear program has the same optimal value as its dual!

Another View

- Painting 1: 4 blue, 1 green, 1 red, sells for $\$ 30$
- Painting 2: 2 blue, 2 green, 1 red, sells for $\$ 20$
- We have 16 units blue, 8 green, 5 red
- Suppose Vince wants to buy paints from us.
- Pay \$b for a unit of blue, \$g for green, \$r for red.
- We can choose to sell the paints, or produce paintings and sell the paintings, or both.

$$
\begin{aligned}
& b \geq 0 \\
& g \geq 0 \\
& r \geq 0
\end{aligned}
$$

$$
\begin{gathered}
4 b+g+r \geq 3 \\
2 b+2 g+r \geq 2
\end{gathered}
$$

Another View

- Vince pays $\$(16 b+8 g+5 r)$ in total.
- We have 16 units blue, 8 green, 5 red
- Suppose Vince wants to buy paints from us.
- Pay \$b for a unit of blue, \$g for green, \$r for red.
- We can choose to sell the paints, or produce paintings and sell the paintings, or both.

$$
\begin{aligned}
& b \geq 0 \\
& g \geq 0 \\
& r \geq 0
\end{aligned}
$$

$$
\begin{gathered}
4 b+g+r \geq 3 \\
2 b+2 g+r \geq 2
\end{gathered}
$$

Using LP for getting the best upper bound on an LP

maximize $3 x+2 y \quad$ minimize $16 b+8 g+5 r$
subject to
$4 x+2 y \leq 16$
$x+2 y \leq 8$
$x+y \leq 5$
$x \geq 0$
$y \geq 0$
primal
subject to

$$
\begin{gathered}
4 b+g+r \geq 3 \\
2 b+2 g+r \geq 2 \\
b \geq 0 \\
g \geq 0 \\
r \geq 0
\end{gathered}
$$

dual

Duality

- Weak duality:

Optimal value of primal \geq Optimal value of dual (when primal LP is max and dual LP is min)

- We can make $\$ 13$ if we produce paintings Vince should pay at least as much
- Strong Duality

Optimal value of primal = Optimal value of dual Vince is a good negotiator

Using LP for getting the best upper bound on an LP

maximize $3 x+2 y \quad$ minimize $16 b+8 g+5 r$
subject to
$4 x+2 y \leq 16$
$x+2 y \leq 8$
$x+y \leq 5$
$x \geq 0$
$y \geq 0$
primal
subject to

$$
\begin{gathered}
4 b+g+r \geq 3 \\
2 b+2 g+r \geq 2 \\
b \geq 0 \\
g \geq 0 \\
r \geq 0
\end{gathered}
$$

dual

Reductions

NP ("nondeterministic polynomial time")

- Recall: decision problems require a yes or no answer
- NP: the class of all decision problems such that if the answer is yes, there is a simple proof of that
- E.g., "does there exist a set cover of size k?"
- If yes, then just show which subsets to choose!
- Technically:
- The proof must have polynomial length
- The correctness of the proof must be verifiable in polynomial time

"Easy to verify" problems: NP

- All decision problems such that we can verify the correctness of a solution in polynomial time.

input

Verifier: OK, that is indeed a solution.

- A problem is NP-hard if it is at least as hard as all problems in NP
- So, trying to find a polynomial-time algorithm for it is like trying to prove $\mathrm{P}=\mathrm{NP}$
- Set cover is NP-hard
- Typical way to prove problem Q is NP-hard:
- Take a known NP-hard problem Q'
- Reduce it to your problem Q
- (in polynomial time)
- E.g., (M)IP is NP-hard, because we have already reduced set cover to it
- (M)IP is more general than set cover, so it can't be easier

Reductions

- Sometimes you can reformulate problem A in terms of problem B (i.e., reduce A to B)
- E.g., we have seen how to formulate several problems as linear programs or integer programs
- In this case problem A is at most as hard as problem B
- Since LP is in P, all problems that we can formulate using LP are in P
- Caveat: only true if the linear program itself can be created in polynomial time!

Independent Set

- In the below graph, does there exist a subset of vertices, of size 4, such that there is no edge between members of the subset?

Independent Set

- In the below graph, does there exist a subset of vertices, of size 4 , such that there is no edge between members of the subset?

- General problem (decision variant): given a graph and a number k, are there k vertices with no edges between them?
- NP-complete

Set Cover (a computational problem)

- We are given:
- A finite set $S=\{1, \ldots, n\}$
- A collection of subsets of $S: S_{1}, S_{2}, \ldots, S_{m}$
- We are asked:
- Find a subset T of $\{1, \ldots, m\}$ such that $U_{j \text { in } T} S_{j}=S$ - Minimize |T|
- Decision variant of the problem:
- we are additionally given a target size k, and
- asked whether a T of size at most k will suffice
- One instance of the set cover problem:
$S=\{1, \ldots, 6\}, S_{1}=\{1,2,4\}, S_{2}=\{3,4,5\}, S_{3}=$
$\{1,3,6\}, S_{4}=\{2,3,5\}, S_{5}=\{4,5,6\}, S_{6}=\{1,3\}$

Visualizing Set Cover

- $S=\{1, \ldots, 6\}, S_{1}=\{1,2,4\}, S_{2}=\{3,4,5\}, S_{3}=$ $\{1,3,6\}, S_{4}=\{2,3,5\}, S_{5}=\{4,5,6\}, S_{6}=\{1,3\}$

Reducing independent set

to set cover

, k=4

- In set cover instance (decision variant),
- let $S=\{1,2,3,4,5,6,7,8,9\}$ (set of edges),
- for each vertex let there be a subset with the vertex's adjacent edges: $\{1,4\},\{1,2,5\},\{2,3\},\{4,6,7\},\{3,6,8,9\},\{9\}$, $\{5,7,8\}$
- target size $=$ \#vertices $-\mathrm{k}=7-4=3$
- Claim: answer to both instances is the same (why??)

Reducing independent set

to set cover

, k=4

- In set cover instance (decision variant),
- let $S=\{1,2,3,4,5,6,7,8,9\}$ (set of edges),
- for each vertex let there be a subset with the vertex's adjacent edges: $\{1,4\},\{1,2,5\},\{2,3\},\{4,6,7\},\{3,6,8,9\},\{9\}$, \{5,7,8\}
- target size $=$ \#vertices $-\mathrm{k}=7-4=3$
- Claim: answer to both instances is the same (why??)
- So which of the two problems is harder?

Reductions:

To show problem Q is easy:

To show problem Q is (NP-)hard:
Problem known to be (NP-)hard
(e.g., set cover, (M)IP)

Polynomial time reductions

- Reduce A to B : a polynomial time algorithm that maps instances of A to instances of problem B, such that the answers are the same.
- $A \leq_{p} B$: B is at least as hard as A .

If you can solve B (in poly time) then you can solve A.

Weighted Bipartite Matching

Weighted bipartite matching

- Match each node on the left with one node on the right (can only use each node once)
- Minimize total cost (weights on the chosen edges)

Weighted bipartite matching...

- minimize $\mathrm{c}_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}$
- subject to
- for every $\mathrm{i}, \Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}}=1$
- for every $\mathrm{j}, \mathrm{\Sigma}_{\mathrm{i}} \mathrm{x}_{\mathrm{ij}}=1$
- for every $\mathrm{i}, \mathrm{j}, \mathrm{x}_{\mathrm{ij}} \geq 0$
- Theorem [Birkhoff-von Neumann]: this linear program always has an optimal solution consisting of just integers
- and typical LP solving algorithms will return such a solution
- So weighted bipartite matching is in P

Weighted bipartite matching

- Match each node on the left with one node on the right (can only use each node once)
- Minimize total cost (weights on the chosen edges)

