CPS 223

Linear Programming Duality, Reductions, and Bipartite Matching

Yu Cheng

Linear Programming Duality

Example linear program

 We make reproductions of two paintings

maximize 3x + 2y subject to

$$4x + 2y \le 16$$
$$x + 2y \le 8$$

 $x + y \le 5$

 $x \ge 0$

y ≥ 0

- Painting 1 sells for \$30, painting 2 sells for \$20
- Painting 1 requires 4 units of blue, 1 green, 1 red
- Painting 2 requires 2 blue, 2 green, 1 red
- We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

Proving optimality

$$4x + 2y \le 16$$

$$x + 2y \le 8$$

$$x + y \le 5$$

$$x \ge 0$$

$$y \ge 0$$

Recall: optimal solution:

$$x=3, y=2$$

Solution value = 9+4 = 13

How do we prove this is optimal (without the picture)?

Proving optimality...

maximize 3x + 2y subject to

$$4x + 2y \le 16$$

$$x + 2y \le 8$$

$$x + y \le 5$$

$$x \ge 0$$

y ≥ 0

We can rewrite the blue constraint as

$$2x + y \le 8$$

If we add the red constraint

$$x + y \le 5$$

we get

$$3x + 2y \le 13$$

Matching upper bound!

(Really, we added .5 times the blue constraint to 1 times the red constraint)

Linear combinations of constraints

```
maximize 3x + 2y
                                b(4x + 2y \le 16) +
                                  g(x + 2y \le 8) +
    subject to
                                    r(x + y \le 5)
  4x + 2y \le 16
    x + 2y \le 8
                                  (4b + g + r)x +
     x + y \le 5
                                  (2b + 2g + r)y \le
                                   16b + 8g + 5r
       x \ge 0
       y ≥ 0
                        4b + g + r must be at least 3
                       2b + 2g + r must be at least 2
                    Given this, minimize 16b + 8g + 5r
```

Using LP for getting the best upper bound on an LP

maximize
$$3x + 2y$$
 minimize $16b + 8g + 5r$
subject to subject to
 $4x + 2y \le 16$ $4b + g + r \ge 3$
 $x + 2y \le 8$ $2b + 2g + r \ge 2$
 $x + y \le 5$ $b \ge 0$
 $x \ge 0$ $g \ge 0$
 $y \ge 0$ $r \ge 0$

the dual of the original program

 Duality theorem: any linear program has the same optimal value as its dual!

Another View

- Painting 1: 4 blue, 1 green, 1 red, sells for \$30
- Painting 2: 2 blue, 2 green, 1 red, sells for \$20
- We have 16 units blue, 8 green, 5 red
 - Suppose Vince wants to buy paints from us.
 - Pay \$b for a unit of blue, \$g for green, \$r for red.
 - We can choose to sell the paints, or produce paintings and sell the paintings, or both.

$$b \ge 0$$

 $g \ge 0$
 $r \ge 0$
 $2b + 2g + r \ge 2$

Another View

- Vince pays \$(16b + 8g + 5r) in total.
- We have 16 units blue, 8 green, 5 red
 - Suppose Vince wants to buy paints from us.
 - Pay \$b for a unit of blue, \$g for green, \$r for red.
 - We can choose to sell the paints, or produce paintings and sell the paintings, or both.

$$b \ge 0$$

 $g \ge 0$
 $r \ge 0$
 $2b + 2g + r \ge 2$

Using LP for getting the best upper bound on an LP

$$4x + 2y \le 16$$

$$x + 2y \le 8$$

$$x + y \le 5$$

$$x \ge 0$$

primal

$$4b + g + r ≥ 3$$

$$2b + 2g + r \ge 2$$

$$g \ge 0$$

$$r \ge 0$$

dual

Duality

Weak duality:
 Optimal value of primal ≥ Optimal value of dual (when primal LP is max and dual LP is min)

We can make \$13 if we produce paintings
 Vince should pay at least as much

Strong Duality
 Optimal value of primal = Optimal value of dual
 Vince is a good negotiator

Using LP for getting the best upper bound on an LP

maximize 3x + 2y subject to

$$4x + 2y \le 16$$

$$x + 2y \le 8$$

$$x + y \le 5$$

$$x \ge 0$$

primal

minimize 16b + 8g + 5r subject to

$$4b + g + r ≥ 3$$

$$2b + 2g + r \ge 2$$

$$g \ge 0$$

$$r \ge 0$$

dual

Reductions

NP ("nondeterministic polynomial time")

- Recall: decision problems require a yes or no answer
- NP: the class of all decision problems such that if the answer is yes, there is a simple proof of that
- E.g., "does there exist a set cover of size k?"
- If yes, then just show which subsets to choose!

- Technically:
 - The proof must have polynomial length
 - The correctness of the proof must be verifiable in polynomial time

"Easy to verify" problems: NP

 All decision problems such that we can verify the correctness of a solution in polynomial time.

Verifier: OK, that is indeed a solution.

NP-hardness

- A problem is NP-hard if it is at least as hard as all problems in NP
- So, trying to find a polynomial-time algorithm for it is like trying to prove P=NP
- Set cover is NP-hard
- Typical way to prove problem Q is NP-hard:
 - Take a known NP-hard problem Q'
 - Reduce it to your problem Q
 - (in polynomial time)
- E.g., (M)IP is NP-hard, because we have already reduced set cover to it
 - (M)IP is more general than set cover, so it can't be easier

Reductions

- Sometimes you can reformulate problem A in terms of problem B (i.e., reduce A to B)
 - E.g., we have seen how to formulate several problems as linear programs or integer programs
- In this case problem A is at most as hard as problem B
 - Since LP is in P, all problems that we can formulate using LP are in P
 - Caveat: only true if the linear program itself can be created in polynomial time!

Independent Set

 In the below graph, does there exist a subset of vertices, of size 4, such that there is no edge between members of the subset?

Independent Set

 In the below graph, does there exist a subset of vertices, of size 4, such that there is no edge between members of the subset?

NP-complete

Set Cover (a computational problem)

- We are given:
 - $A finite set S = \{1, ..., n\}$
 - A collection of subsets of S: S₁, S₂, ..., S_m
- We are asked:
 - Find a subset T of $\{1, ..., m\}$ such that $U_{i in T}S_i = S$
 - Minimize |T|
- Decision variant of the problem:
 - we are additionally given a target size k, and
 - asked whether a T of size at most k will suffice
- One instance of the set cover problem:

$$S = \{1, ..., 6\}, S_1 = \{1,2,4\}, S_2 = \{3,4,5\}, S_3 = \{1,3,6\}, S_4 = \{2,3,5\}, S_5 = \{4,5,6\}, S_6 = \{1,3\}$$

Visualizing Set Cover

• $S = \{1, ..., 6\}, S_1 = \{1,2,4\}, S_2 = \{3,4,5\}, S_3 = \{1,3,6\}, S_4 = \{2,3,5\}, S_5 = \{4,5,6\}, S_6 = \{1,3\}$

Reducing independent set to set cover

- In set cover instance (decision variant),
 - let S = $\{1,2,3,4,5,6,7,8,9\}$ (set of edges),
 - for each vertex let there be a subset with the vertex's adjacent edges: {1,4}, {1,2,5}, {2,3}, {4,6,7}, {3,6,8,9}, {9}, {5,7,8}
 - target size = #vertices k = 7 4 = 3
- Claim: answer to both instances is the same (why??)

Reducing independent set to set cover

- In set cover instance (decision variant),
 - let S = $\{1,2,3,4,5,6,7,8,9\}$ (set of edges),
 - for each vertex let there be a subset with the vertex's adjacent edges: {1,4}, {1,2,5}, {2,3}, {4,6,7}, {3,6,8,9}, {9}, {5,7,8}
 - target size = #vertices k = 7 4 = 3
- Claim: answer to both instances is the same (why??)
- So which of the two problems is harder?

Reductions:

To show problem Q is easy:

To show problem Q is (NP-)hard:

Polynomial time reductions

 Reduce A to B: a polynomial time algorithm that maps instances of A to instances of problem B, such that the answers are the same.

A ≤_p B: B is at least as hard as A.
 If you can solve B (in poly time) then you can solve A.

Weighted Bipartite Matching

Weighted bipartite matching

- Match each node on the left with one node on the right (can only use each node once)
- Minimize total cost (weights on the chosen edges)

Weighted bipartite matching...

- minimize c_{ij} x_{ij}
- subject to
- for every i, $\Sigma_i x_{ii} = 1$
- for every j, $\Sigma_i x_{ij} = 1$
- for every i, j, x_{ij} ≥ 0
- Theorem [Birkhoff-von Neumann]: this linear program always has an optimal solution consisting of just integers
 - and typical LP solving algorithms will return such a solution
- So weighted bipartite matching is in P

Weighted bipartite matching

- Match each node on the left with one node on the right (can only use each node once)
- Minimize total cost (weights on the chosen edges)