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Nash’s Proof and PPAD

(Slides borrowed from MIT Topics in Algorithmic 
Game Theory course by Constantinos Daskalakis)



 ƒ: [0,1]2 ®[0,1]2, continuous
such that

fixed points º Nash eq.
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 ƒ: [0,1]2 ®[0,1]2, cont.
such that

fixed point º Nash eq.
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Lemma: No matter how the internal nodes are colored there exists a 
tri-chromatic triangle. In fact, an odd number of them.
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Lemma: No matter how the internal nodes are colored there exists a 
tri-chromatic triangle.

Transition Rule: If  $ red - yellow door 
cross it with yellow on 
your left hand?
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The PPAD Class [Papadimitriou’94]
The class of all problems with guaranteed solution by 
dint of the following graph-theoretic lemma

A directed graph with an unbalanced node (node with 
indegree ¹ outdegree) must have another.

Such problems are defined by a directed graph G, and 
an unbalanced node u of G; they require finding 
another unbalanced node.
e.g. finding a Sperner triangle is in PPAD

But wait a second…given an unbalanced node in a 
directed graph, why is it not trivial to find another?



Solving SPERNER

However, the walk may wonder in the box for a long time, 
before locating the tri-chromatic triangle. Worst-case: 22n.

2n



The PPAD Class

The class of all problems with guaranteed solution by 
dint of the following graph-theoretic lemma

A directed graph with an unbalanced node (node with 
indegree ¹ outdegree) must have another.

Where is PPAD located w.r.t. NP?

Such problems are defined by a directed graph G (huge 
but implicitly defined), and an unbalanced node u of G; 
they require finding another unbalanced node.
e.g. SPERNER Î PPAD



(Believed) Location of PPAD

P

NP

NP-
complete
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Finding Nash Equilibrium



Games and Computation

• [Nash 50] Every finite game has an 

equilibrium point

– Finding it requires solving hard problems

July 19, 2017 Yu Cheng



Games and Computation

If one can find an (approximate) equilibrium
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How hard is it to compute one
(any) Nash equilibrium?

• Complexity was open for a long time
– [Papadimitriou STOC01]: “together with factoring […] the 

most important concrete open question on the boundary 
of P today”

• Recent sequence of papers shows that computing 
one (any) Nash equilibrium is PPAD-complete (even 
in 2-player games) [Daskalakis, Goldberg, Papadimitriou 2006; Chen, 
Deng 2006]

• All known algorithms require exponential time (in the 
worst case)



What if we want to compute a Nash 
equilibrium with a specific property?

• For example:
– An equilibrium that is not Pareto-dominated
– An equilibrium that maximizes the expected social welfare (= the 

sum of the agents’ utilities)
– An equilibrium that maximizes the expected utility of a given player
– An equilibrium that maximizes the expected utility of the worst-off 

player
– An equilibrium in which a given pure strategy is played with positive 

probability
– An equilibrium in which a given pure strategy is played with zero 

probability
– …

• All of these are NP-hard (and the optimization questions are 
inapproximable assuming P ≠ NP), even in 2-player games 
[Gilboa, Zemel 89; Conitzer & Sandholm IJCAI-03/GEB-08]



Search-based approaches (for 2 players)

• Suppose we know the support Xi of each 
player i’s mixed strategy in equilibrium
– That is, which pure strategies receive positive 

probability
• Then, we have a linear feasibility problem:

– for both i, for any si Î Si - Xi, pi(si) = 0
– for both i, for any si Î Xi, Σp-i(s-i)ui(si, s-i) = ui
– for both i, for any si Î Si - Xi, Σp-i(s-i)ui(si, s-i) ≤ ui

• Thus, we can search over possible supports
– This is the basic idea underlying methods in 

[Dickhaut & Kaplan 91;  Porter, Nudelman, Shoham AAAI04/GEB08]

• Dominated strategies can be eliminated



Solving for a Nash equilibrium 
using MIP (2 players)

[Sandholm, Gilpin, Conitzer AAAI05]

• maximize whatever you like (e.g., social welfare)
• subject to 

– for both i, for any si, Σs-i ps-i ui(si, s-i) = usi
– for both i, for any si, ui ≥ usi
– for both i, for any si, psi ≤ bsi
– for both i, for any si, ui - usi ≤ M(1- bsi)
– for both i, Σsi psi = 1

• bsi is a binary variable indicating whether si is 
in the support, M is a large number



Extensive-Form Games



Imperfect information
• Dotted lines indicate that a player cannot distinguish 

between two (or more) states
– A set of states that are connected by dotted lines is called an 

information set
• Reflected in the normal-form representation

Player 1

Player 2 Player 2

0, 0 -1, 1 1, -1 -5, -5

0, 0 -1, 1
1, -1 -5, -5

L R

L

R

• Any normal-form game can be transformed into an 
imperfect-information extensive-form game this way



Subgame perfection and 
imperfect information

Player 1

Player 2 Player 2

1, -1 -1, 1 -1, 1 1, -1

• How should we extend the notion of subgame perfection 
to games of imperfect information? 

• We cannot expect Player 2 to play Right after Player 1 plays Left, and 
Left after Player 1 plays Right, because of the information set

• Let us say that a subtree is a subgame only if there are no information 
sets that connect the subtree to parts outside the subtree



Subgame perfection and 
imperfect information…

Player 1

Player 2 Player 2

4, 1 0, 0 5, 1 1, 0
• One of the Nash equilibria is: (R, RR)
• Also subgame perfect (the only subgames are the whole game, and the 

subgame after Player 1 moves Right)
• But it is not reasonable to believe that Player 2 will move Right after Player 

1 moves Left/Middle (not a credible threat)
• There exist more sophisticated refinements of Nash equilibrium that rule 

out such behavior

Player 2

3, 2 2, 3



Computing equilibria in the 
extensive form

• Can just use normal-form representation
– Misses issues of subgame perfection, etc.

• Another problem: there are exponentially many 
pure strategies, so normal form is exponentially 
larger
– Even given polynomial-time algorithms for normal form, 

time would still be exponential in the size of the 
extensive form

• There are other techniques that reason directly 
over the extensive form and scale much better
– E.g., using the sequence form of the game



Commitment
• Consider the following (normal-form) game:

2, 1 4, 0
1, 0 3, 1

• How should this game be played?
• Now suppose the game is played as follows:

– Player 1 commits to playing one of the rows,
– Player 2 observes the commitment and then chooses a 

column
• What is the optimal strategy for player 1?
• What if 1 can commit to a mixed strategy?



Commitment as an 
extensive-form game

Player 1

Player 2 Player 2

2, 1 4, 0 1, 0 3, 1

• For the case of committing to a pure strategy:

Up Down

Left Left RightRight



Commitment as an 
extensive-form game

Player 1

Player 2

2, 1 4, 0 1, 0 3, 1

• For the case of committing to a mixed strategy:

(1,0) 
(=Up)

Left Left RightRight

1.5, .5 3.5, .5

Left Right

(0,1) 
(=Down)

(.5,.5)

… …

• Infinite-size game; computationally impractical to reason 
with the extensive form here



Solving for the optimal mixed 
strategy to commit to

[Conitzer & Sandholm 2006, von Stengel & Zamir 2010]

• For every column t separately, we will solve 
separately for the best mixed row strategy (defined 
by ps) that induces player 2 to play t

• maximize Σs ps u1(s, t) 
• subject to 

for any t’, Σs ps u2(s, t) ≥ Σs ps u2(s, t’) 
Σs ps = 1

• (May be infeasible, e.g., if t is strictly dominated)
• Pick the t that is best for player 1



Visualization

L C R

U 0,1 1,0 0,0

M 4,0 0,1 0,0

D 0,0 1,0 1,1

(1,0,0) = U

(0,1,0) = M

(0,0,1) = D

L

C

R


