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Game and Nash Equilibrium
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Nash’'s Proof and PPAD

(Slides borrowed from MIT Topics in Algorithmic
Game Theory course by Constantinos Daskalakis)



Visualizing Nash’s Proof
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Visualizing Nash’s Proof
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Nash’s Proof
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Visualizing Nash’s Proof
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Visualizing Nash’s Proof
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Sperner’s Lemma
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Lemma: No matter how the internal nodes are colored there exists a
tri-chromatic triangle. In fact, an odd number of them.
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Sperner’s Lemma

Lemma: No matter how the internal nodes are colored there exists a
tri-chromatic triangle. In fact, an odd number of them.



Sperner’s Lemma

Space of
Triangles

Lemma: No matter how the internal nodes are colored there exists a
tri-chromatic triangle.
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The PPAD Class [Papadimitriou’94]

The class of all problems with guaranteed solution by
dint of the following graph-theoretic lemma

A directed graph with an unbalanced node (node with
indegree # outdegree) must have another.

Such problems are defined by a directed graph G, and
an unbalanced node u of G; they require finding
another unbalanced node.

¢.g. finding a Sperner triangle 1s in PPAD

But wait a second...given an unbalanced node in a
directed graph, why 1is it not trivial to find another?



Solving SPERNER
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However, the walk may wonder 1n the box for a long time,
before locating the tri-chromatic triangle. Worst-case: 22",



The PPAD Class

The class of all problems with guaranteed solution by
dint of the following graph-theoretic lemma

A directed graph with an unbalanced node (node with
indegree # outdegree) must have another.

Such problems are defined by a directed graph G (huge
but implicitly defined), and an unbalanced node u of G,
they require finding another unbalanced node.

e.2. SPERNER € PPAD

Where 1s PPAD located w.r.t. NP?



(Believed) Location of PPAD

NP-
complete




Finding Nash Equilibrium



Games and Computation

» [Nash 50] Every finite game has an
equilibrium point

— Finding it requires solving hard problems

July 19, 2017 Yu Cheng



Games and Computation

If one can find an (approximate) equilibrium
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How hard is it to compute one
(any) Nash equilibrium?

» Complexity was open for a long time

— [Papadimitriou STOCO1]: "together with factoring [...] the
most important concrete open question on the boundary

of P today”

* Recent sequence of papers shows that computing
one (any) Nash equilibrium is PPAD-complete (even

in 2-player games) [Daskalakis, Goldberg, Papadimitriou 2006; Chen,
Deng 2000]

 All known algorithms require exponential time (in the
worst case)



What if we want to compute a Nash
equilibrium with a specific property?

* For example:
— An equilibrium that is not Pareto-dominated

— An equilibrium that maximizes the expected social welfare (= the
sum of the agents’ utilities)

— An equilibrium that maximizes the expected utility of a given player

— An equilibrium that maximizes the expected utility of the worst-off
player

— An equilibrium in which a given pure strategy is played with positive
probability

— An equilibrium in which a given pure strategy is played with zero
probability

» All of these are NP-hard (and the optimization questions are

iInapproximable assuming P # NP), even in 2-player games
[Gilboa, Zemel 89; Conitzer & Sandholm |JCAI-03/GEB-08]



Search-based approaches (or 2 players)

* Suppose we know the support X, of each
player i's mixed strategy in equilibrium

— That is, which pure strategies receive positive
probability

* Then, we have a linear feasibility problem:
—for both i, forany s, e S;- X, pi(s;) =0
—for both i, for any s; € X, 2p.i(s.)ui(s;, S.) = u;
—for both i, for any s, € S;- X, Zp.(s.)ui(s;, S.i) < u;
* Thus, we can search over possible supports

— This is the basic idea underlying methods in
[Dickhaut & Kaplan 91; Porter, Nudelman, Shoham AAAI04/GEBO8]

 Dominated strategies can be eliminated




Solving for a Nash equilibrium

using MIP (2 players)

[Sandholm, Gilpin, Conitzer AAAIO5]

* maximize whatever you like (e.g., social welfare)
* subject to

— for bot
— for bot
— for bot
— for bot
— for bot

N i, for any s;, 25, Ps_ Ui(S;, S.) = Us,

N i, for any s;, u; 2 ug,

N i, for any s;, ps, < bSI

n i, for any s;, u; < M(1- b))
N1, 25 Ps, = 1

* b, Is a binary variable indicating whether s; is
IN the support, M is a large number



Extensive-Form Games



Imperfect information

* Dotted lines indicate that a player cannot distinguish
between two (or more) states

— A set of states that are connected by dotted lines is called an
information set

» Reflected in the normal-form representation
Player 1

Player 2 feeeeeeeeeeeeeieeeeeeneeenn) Player 2

0,0 -1,1 1,1 -5, -5

* Any normal-form game can be transformed into an
imperfect-information extensive-form game this way



Subgame perfection and
imperfect information

 How should we extend the notion of subgame perfection
to games of imperfect information?

Player 1

1, -1 1,1 1,1 1, -1
We cannot expect Player 2 to play Right after Player 1 plays Left, and

Left after Player 1 plays Right, because of the information set

Let us say that a subtree is a subgame only if there are no information
sets that connect the subtree to parts outside the subtree



Subgame perfection and
imperfect information...

Player 1

Player 2 e Player 2

Player 2

4,1 0,0 5,1 1,0 3, 2 2,3
One of the Nash equilibria is: (R, RR)

Also subgame perfect (the only subgames are the whole game, and the
subgame after Player 1 moves Right)

But it is not reasonable to believe that Player 2 will move Right after Player
1 moves Left/Middle (not a credible threat)

There exist more sophisticated refinements of Nash equilibrium that rule
out such behavior



Computing equilibria in the
extensive form

e Can just use normal-form representation
— Misses issues of subgame perfection, etc.
* Another problem: there are exponentially many

pure strategies, so normal form is exponentially
larger

— Even given polynomial-time algorithms for normal form,
time would still be exponential in the size of the
extensive form

* There are other techniques that reason directly
over the extensive form and scale much better

— E.g., using the sequence form of the game



Commitment

Consider the following (normal-form) game:

2,114,0
1,03, 1

How should this game be played?

Now suppose the game is played as follows:
— Player 1 commits to playing one of the rows,

— Player 2 observes the commitment and then chooses a
column

What is the optimal strategy for player 1?
What if 1 can commit to a mixed strategy?




Commitment as an
extensive-form game

* For the case of committing to a pure strategy:

Player 1

Player 2 Player 2

Left Right Left Right

2,1 4,0 1,0 3, 1



Commitment as an
extensive-form game

* For the case of committing to a mixed strategy:

Player 1

2,1 4,0 1.5, .5 3.5, .5 1,0 3,1

* Infinite-size game; computationally impractical to reason
with the extensive form here



Solving for the optimal mixed
strategy to commit to

[Conitzer & Sandholm 2006, von Stengel & Zamir 2010]

For every column t separately, we will solve
separately for the best mixed row strategy (defined
by p,) that induces player 2 to play t

maximize 2, pg U(s, t)

subject to

forany t', 2, psUx(S, t) =2 2, ps Us(S, 1)

25 Ps=1

(May be infeasible, e.qg., if t is strictly dominated)
Pick the t that is best for player 1



Visualization
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