CPS 223

Game and Nash Equilibrium

Yu Cheng

Nash's Proof and PPAD

(Slides borrowed from MIT **Topics in Algorithmic Game Theory** course by Constantinos Daskalakis)

Kick Dive	Left	Right	
Left	1,-1	-1,1	$f: [0,1]^2 \rightarrow [0,1]^2$, continuous such that
Right	-1,1	1, -1	fixed points \equiv Nash eq.

Penalty Shot Game

			0	Pr[Right]	1
Kick Dive	Left	Right			
Left	1,-1	-1,1	T Pr[Right]		
Right	-1,1	1, -1			
Penalt	v Shot	Game	1		

Kick Dive	Left	Right
Left	1,-1	-1,1
Right	-1,1	1, -1

Penalty Shot Game

Kick Dive	Left	Right
Left	1,-1	-1,1
Right	-1,1	1, -1

Penalty Shot Game

Space of Triangles

Lemma: No matter how the internal nodes are colored there exists a tri-chromatic triangle.

The PPAD Class [Papadimitriou'94]

The class of all problems with guaranteed solution by dint of the following graph-theoretic lemma

A directed graph with an unbalanced node (node with indegree ≠ outdegree) must have another.

Such problems are defined by a directed graph G, and an unbalanced node u of G; they require finding another unbalanced node.

e.g. finding a Sperner triangle is in PPAD

But wait a second...given an unbalanced node in a directed graph, why is it not trivial to find another?

Solving SPERNER

However, the walk may wonder in the box for a long time, before locating the tri-chromatic triangle. Worst-case: 2^{2n} .

The PPAD Class

The class of all problems with guaranteed solution by dint of the following graph-theoretic lemma

A directed graph with an unbalanced node (node with indegree ≠ outdegree) must have another.

Such problems are defined by a directed graph G (huge but implicitly defined), and an unbalanced node u of G; they require finding another unbalanced node.

e.g. SPERNER ∈ PPAD

Where is PPAD located w.r.t. NP?

(Believed) Location of PPAD

Finding Nash Equilibrium

Games and Computation

- [Nash 50] Every finite game has an equilibrium point
 - Finding it requires solving hard problems

Games and Computation

If one can find an (approximate) equilibrium

How hard is it to compute *one* (any) Nash equilibrium?

- Complexity was open for a long time
 - [Papadimitriou STOC01]: "together with factoring [...] the most important concrete open question on the boundary of P today"
- Recent sequence of papers shows that computing one (any) Nash equilibrium is PPAD-complete (even in 2-player games) [Daskalakis, Goldberg, Papadimitriou 2006; Chen, Deng 2006]
- All known algorithms require exponential time (in the worst case)

What if we want to compute a Nash equilibrium with a specific property?

For example:

- An equilibrium that is not Pareto-dominated
- An equilibrium that maximizes the expected social welfare (= the sum of the agents' utilities)
- An equilibrium that maximizes the expected utility of a given player
- An equilibrium that maximizes the expected utility of the worst-off player
- An equilibrium in which a given pure strategy is played with positive probability
- An equilibrium in which a given pure strategy is played with zero probability

– ...

 All of these are NP-hard (and the optimization questions are inapproximable assuming P ≠ NP), even in 2-player games [Gilboa, Zemel 89; Conitzer & Sandholm IJCAI-03/GEB-08]

Search-based approaches (for 2 players)

- Suppose we know the support X_i of each player i's mixed strategy in equilibrium
 - That is, which pure strategies receive positive probability
- Then, we have a linear feasibility problem:
 - for both i, for any $s_i \in S_i X_i$, $p_i(s_i) = 0$
 - for both i, for any $s_i \in X_i$, $\Sigma p_{-i}(s_{-i})u_i(s_i, s_{-i}) = u_i$
 - for both i, for any $s_i \in S_i X_i$, $\Sigma p_{-i}(s_{-i})u_i(s_i, s_{-i}) \le u_i$
- Thus, we can search over possible supports
 - This is the basic idea underlying methods in [Dickhaut & Kaplan 91; Porter, Nudelman, Shoham AAAI04/GEB08]
- Dominated strategies can be eliminated

Solving for a Nash equilibrium using MIP (2 players)

[Sandholm, Gilpin, Conitzer AAAI05]

- maximize whatever you like (e.g., social welfare)
- subject to
 - for both i, for any s_i , $\Sigma_{s_{-i}} p_{s_{-i}} u_i(s_i, s_{-i}) = u_{s_i}$
 - for both i, for any s_i, u_i ≥ u_{s_i}
 - for both i, for any s_i, **p**_{s_i} ≤ **b**_{s_i}
 - for both i, for any s_i , $u_i u_{s_i} \le M(1 b_{s_i})$
 - for both i, $\Sigma_{s_i} \mathbf{p}_{s_i} = 1$
- b_{si} is a binary variable indicating whether s_i is in the support, M is a large number

Extensive-Form Games

Imperfect information

- Dotted lines indicate that a player cannot distinguish between two (or more) states
 - A set of states that are connected by dotted lines is called an information set
- Reflected in the normal-form representation

 Any normal-form game can be transformed into an imperfect-information extensive-form game this way

Subgame perfection and imperfect information

 How should we extend the notion of subgame perfection to games of imperfect information?

- We cannot expect Player 2 to play Right after Player 1 plays Left, and Left after Player 1 plays Right, because of the information set
- Let us say that a subtree is a subgame only if there are no information sets that connect the subtree to parts outside the subtree

Subgame perfection and imperfect information...

- One of the Nash equilibria is: (R, RR)
- Also subgame perfect (the only subgames are the whole game, and the subgame after Player 1 moves Right)
- But it is not reasonable to believe that Player 2 will move Right after Player
 1 moves Left/Middle (not a credible threat)
- There exist more sophisticated refinements of Nash equilibrium that rule out such behavior

Computing equilibria in the extensive form

- Can just use normal-form representation
 - Misses issues of subgame perfection, etc.
- Another problem: there are exponentially many pure strategies, so normal form is exponentially larger
 - Even given polynomial-time algorithms for normal form, time would still be exponential in the size of the extensive form
- There are other techniques that reason directly over the extensive form and scale much better
 - E.g., using the sequence form of the game

Commitment

Consider the following (normal-form) game:

2, 1	1 4	ŀ, O	
1, () 3	3, 1	

- How should this game be played?
- Now suppose the game is played as follows:
 - Player 1 commits to playing one of the rows,
 - Player 2 observes the commitment and then chooses a column
- What is the optimal strategy for player 1?
- What if 1 can commit to a mixed strategy?

Commitment as an extensive-form game

For the case of committing to a pure strategy:

Commitment as an extensive-form game

For the case of committing to a mixed strategy:

 Infinite-size game; computationally impractical to reason with the extensive form here

Solving for the optimal mixed strategy to commit to

[Conitzer & Sandholm 2006, von Stengel & Zamir 2010]

- For every column t separately, we will solve separately for the best mixed row strategy (defined by p_s) that induces player 2 to play t
- maximize $\Sigma_s \mathbf{p_s} \mathbf{u_1}(s, t)$
- subject to
 for any t', Σ_s p_s u₂(s, t) ≥ Σ_s p_s u₂(s, t')
 Σ_s p_s = 1
- (May be infeasible, e.g., if t is strictly dominated)
- Pick the t that is best for player 1

Visualization

	L	С	R			
U	0,1	1,0	0,0	(0,1,0) = M		
M	4,0	0,1	0,0			
D	0,0	1,0	1,1			
C C R						
			(1,0,0) = 1	$(0,0,1) = \Gamma$		