COMPSCI630 Randomized Algorithms Assignment 0

Due Date: Friday Jan. 19

Problem 1 (Karger-Stein Algorithm). We've talked about Karger-Stein algorithm for MIN-CUT in class:

```
Algorithm 1 Fast-Min-Cut(G)
    if \(|V| \leq 8\) then
        Return Min-Cut(G)
    else
        Let \(t=\lceil|V| / \sqrt{2}\rceil\).
        Let \(G_{1}=\operatorname{Contract}(G, t) ; G_{2}=\operatorname{Contract}(G, t)\);
        Return \(\min \left\{\right.\) Fast-Min-Cut \(\left(G_{1}\right)\), Fast-Min-Cut \(\left.\left(G_{2}\right)\right\}\).
    end if
```

Here $\operatorname{Min}-\operatorname{Cut}(G)$ is an algorithm for solving MIN CUT on small graphs; Contract (G, t) is similar to Karger's algorithm and will randomly contract edges in G until there are only t vertices left.

In this problem we would like to show the success probability of the algorithm is $\Omega(1 / \log n)$ for a graph of n vertices.
(a) Let $P(n)$ be the probability of success for the algorithm on n vertices, express $P(n)$ recursively using $P(n / \sqrt{2})$. (Here for simplicity, you can assume $n / \sqrt{2}$ is an integer. Also, you can assume that the probability that the \min cut of G_{1} is equal to min cut of G is exactly $1 / 2$.)
(b) Let $f(t)=P\left(\sqrt{2}^{t}\right)$, use induction to prove that $f(t) \geq 4 / t$ for $t \geq 4$.

Problem 2 (Distinct Min Cuts). (a) Prove that any graph G with n vertices can have at most $\binom{n}{2}$ distinct min cuts. (Two cuts are different if they contain different set of edges.)
(Hint: Look at the success probability of Karger's min cut algorithm.)
(b) For any n, construct a graph that has exactly $\binom{n}{2}$ distinct min cuts.

