COMPSCI630 Randomized Algorithms Assignment 0

Due Date: Friday Jan. 19

Problem 1 (Karger-Stein Algorithm). We've talked about Karger-Stein algorithm for MIN-CUT in class:

Algorithm 1 Fast-Min-Cut(G)
if $ V \leq 8$ then
Return $Min-Cut(G)$
else
Let $t = \lceil V /\sqrt{2} \rceil$.
Let $G_1 = \text{Contract}(G, t); G_2 = \text{Contract}(G, t);$
Return min{Fast-Min-Cut(G_1), Fast-Min-Cut(G_2)}.
end if

Here Min-Cut(G) is an algorithm for solving MIN CUT on small graphs; Contract(G, t) is similar to Karger's algorithm and will randomly contract edges in G until there are only t vertices left.

In this problem we would like to show the success probability of the algorithm is $\Omega(1/\log n)$ for a graph of n vertices.

(a) Let P(n) be the probability of success for the algorithm on n vertices, express P(n) recursively using $P(n/\sqrt{2})$. (Here for simplicity, you can assume $n/\sqrt{2}$ is an integer. Also, you can assume that the probability that the min cut of G_1 is equal to min cut of G is exactly 1/2.) (b) Let $f(t) = P(\sqrt{2}^t)$, use induction to prove that $f(t) \ge 4/t$ for $t \ge 4$.

Problem 2 (Distinct Min Cuts). (a) Prove that any graph G with n vertices can have at most $\binom{n}{2}$ distinct min cuts. (Two cuts are different if they contain different set of edges.)

(Hint: Look at the success probability of Karger's min cut algorithm.)

(b) For any n, construct a graph that has exactly $\binom{n}{2}$ distinct min cuts.