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Lecture 3
Lecturer: Rong Ge Scribe: Alex Steiger

1 Overview

In this lecture, we will introduce the common model of balls and bins and analyze a number of example
problems using it. The setting is that we have n bins, and balls are thrown independently and uniformly at
random into them, and thus any ball ends up in any given bin with probability 1/n. We can ask a number of
questions in this setting, such as:

1. How many balls should be thrown before a bin has two balls in it?
2. How many balls should be thrown before every bin has at least one ball in it?
3. After throwing m balls, how many balls are in the bin with the most balls?

In today’s lecture, we will focus on two problems which we will formulate in this setting, the birthday
paradox and coupon collector problem.

2 Preliminaries

First, we recall a few inequalities that we will use.

Definition 1 (Markov’s inequality). Let X be a non-negative random variable. Then for any real number
t > 0, Pr [X ≥ t]≤ E[X ]/t.

Definition 2 (Chebychev’s inequality). Let X be a non-negative random variable. Then for any real number
t > 0, Pr [|X−E[X ]| ≥ t]≤ Var[X ]/t2.

Definition 3 (Union bound). Let {A1,A2, . . . ,An} be a set of events. Then Pr
[ ⋃

1≤i≤n
Ai

]
≤ ∑

1≤i≤n
Pr [Ai].

3 The birthday paradox

Consider a room of m people. It is reasonable to consider that their m birthdays are independent and each
are any given day of the year with equal probability. What is the probability that two people have the same
birthday? By the pigeonhole principle, if m> 365, then this occurs with probability 1. The birthday paradox
states that when n = 23, the probability is roughly 1/2. In this section we will try to answer this question
after formulating it in the balls and bins setting: after throwing m balls into n bins, what is the probability
that a bin has at least two balls in it? By setting n = 365, this is equivalent to the original question set out
(ignoring leap days).
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3.1 Idea 1: Compute the exact probability using conditioning

First, we will attempt to compute the exact probability as follows. For 1 ≤ i ≤ m, let Ai be the event that
after throwing the first i balls, all lie in different bins. Then we have

Pr[Ai+1] = Pr[Ai+1 | Ai] ·Pr[Ai]+Pr[Ai+1 | ¬Ai] ·Pr[¬Ai] (1)

= Pr[Ai+1 | Ai] ·Pr[Ai]+0 (2)

= Pr[ i’th ball thrown into an empty bin | Ai] ·Pr[Ai] (3)

=
n− i

n
·Pr[Ai] (4)

=

(
1− i

n

)
·Pr[Ai]. (5)

Line 1 follows from the law of total probability, line 2 follows from the fact that Pr[Ai+1 | ¬Ai] = 0, and line
3 follows by definition of Ai+1. Then line 4 follows since Ai implies exactly n− i bins are empty, and the
(i+1)’th ball ends up in any bin with equal probability. Since Pr[A1] = 1, it follows by induction that:

Pr[Am] =

(
1− m−1

n

)(
1− m−2

n

)(
1− m−2

n

)
. . .

(
1− 2

n

)(
1− 1

n

)
(6)

First, note that this exact probability is similar to the success probability of Karger’s global min-cut
algorithm from the first lecture, but not as nice to simplify. Here, we employ our first trick to lower bound
this probability: for any a,b ∈ [0,1], (1−a)(1−b) = 1−a−b+ab≥ 1−a−b. (Note the similarity of this
inequality to the union bound.) Repeatedly applying this inequality, we have:

Pr[Am]≥ 1− m−1
n
− m−2

n
−·· ·− 2

n
− 1

n
≥ 1− m(m−1)

2n
(7)

This implies that when m is sufficiently small (say a small constant), probability is close to 1; however,
for m ≈

√
2n, we get a lower bound close to zero, which is arguably useless since the event clearly occurs

with some positive probability.

Using another trick, we will obtain an upper bound on Pr[Am]. First, recall the series expansion ex =

1+x+ x2

2 + x3

6 + . . ., then note 1+x < ex. In particular, 1+x is a decent approximation to ex for x ∈ [−1,1].
It follows that:

Pr[Am]≤ exp
(
−m−1

n

)
exp
(
−m−2

n

)
. . .exp

(
−2

n

)
exp
(
−1

n

)
= exp

(
−m(m−1)

2n

)
(8)

where exp(x) = ex. Then, from this upper bound and our previous lower bound, we have that when m ≈√
(2− ε)n for a constant ε > 0, we have Pr[Am] = Θ(1).
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3.2 Idea 2: Use the union bound and linearity of expectation

For 1 ≤ i < j ≤ m, let Bi, j be the event that the i’th ball and j’th ball are thrown into the same bin. Clearly
Pr[Bi, j] = 1/n. By definition, we have:

Am =
⋂

1≤i< j≤n

¬Bi, j (9)

=⇒ ¬Am =
⋃

1≤i< j≤n

Bi, j. (10)

By applying the union bound to ¬Am, we have

Pr[¬Am]≤ ∑
1≤i< j≤m

Pr[Bi, j] =
m(m−1)

n
(11)

which gives us the same lower bound of 1− m(m−1)
2n we previously obtained for Pr[Am].

Alternatively, we can get the same bound again by computing the expected number of collisions, i.e.
the number of times a distinct pair of balls are thrown into the same bin, then applying Markov’s inequality
to obtain a lower bound on Pr[Am]. Note that the number of collisions is equal to the number of Bi, j’s that
occur, and Am occurs if and only if that number is zero. Then we have

E

[
∑

1≤i< j≤m
1Ai, j

]
= ∑

1≤i< j≤m
E
[
1Ai, j

]
= ∑

1≤i< j≤m
Pr[Ai, j] =

m(m−1)
2n

(12)

where 1x is the indicator variable for an event x. By Markov’s inequality, it follows that:

Pr[¬Am] = Pr

[
∑

1≤i< j≤m
1Bi, j ≥ 1

]
≤ m(m−1)

2n
. (13)

4 The coupon collector problem

In the coupon collector problem, there are n different types of coupons, and you want to collect (at least)
one of each type. You obtain the coupons one at a time, and each coupon’s type is sampled independently
and uniformly at random. In expectation, how many coupons will you obtain before you have one of each
type? To answer this question, we will formulate as throwing balls into bins: in expectation, how many balls
will be thrown before all n bins are non-empty?

4.1 Idea 1: Compute the expectation directly

Let T be the number of balls thrown so that all bins are non-empty, and let Ti be the number of balls thrown
to go from i−1 non-empty bins to i non-empty bins. Then T = ∑

n
i=1 Ti. For example, let m = 5. Consider

the following sequence of indices which denote the bins that the balls were thrown into:

3 | 3,2 | 1 | 2,3,1,5 | 1,1,4 | (14)

The vertical bars are placed immediately after the first occurrences of each index so that the i’th bar denotes
the end of the i’th phase. That is, the first ball landed in bin 3, ending the first phase and starting the second.
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Then the second ball also landed in bin 3, followed by the third ball landing in bin 2, ending the second
phase and starting the third, and so on. In this example, 〈T1,T2,T3,T4,T5〉= 〈1,2,1,4,3〉, and thus T = 11.

By linearity of expectation, we have E[T ] = ∑
n
i=1 E [Ti], so it is sufficient to compute E[Ti] for each i. At

this point, we recognize Ti is a geometric random variable. That is, with probability p = (n− (i−1))/n, the
i’th phase ends by the ball being thrown into one of the n− (i−1) empty bins, or the phase continues with
probability 1− p by the ball being thrown into one of the (i− 1) non-empty bins. In other words, for any
integer k > 0, we have

Pr[Ti = k] =
(

i−1
n

)k−1(n− (i−1)
n

)
(15)

and thus E[Ti] = 1/p = n/(n− (i−1)). It follows that:

E[T ] =
n

∑
i=1

n
n− (i−1)

= n ·
(

1
n
+

1
n−1

+ . . .
1
2
+1
)

= n ·Hn

=⇒ n logn≤ E[T ]≤ n log(n+1)+n

=⇒ E[T ] = Θ(n logn).

Note that the implication follows from the fact that the n’th harmonic number, Hn, is bounded between
logn and log(n+1)+1 (where log is the natural logarithm). Therefore, we should expect to obtain roughly
n logn coupons before we collect one of each type. However, without further analysis, this does not give
any insight on how likely it is for us to collect more or less than the expected number. To gain this insight,
we will apply Chebychev’s inequality (as defined in the preliminaries section), which requires us to upper
bound the variance of T , denoted by Var[T ].

Recall that for independent random variables X and Y , Var[X +Y ] = Var[X ]+Var[Y ]. Clearly Ti and Tj

for i 6= j are independent; loosely speaking, the length of one phase does not affect the length of another
since all ball throws are independent. Furthermore, since Ti is a geometric random variable with success
probability p = (n− (i−1))/n, we know Var[Ti] = (1− p)/p2. It follows that

Var[T ] = Var

[
n

∑
i=1

Ti

]

=
n

∑
i=1

Var [Ti]

=
n

∑
i=1

n(i−1)
(n− (i−1))2

= n2
n

∑
i=1

(
1
n2 +

1
(n−1)2 + . . .+

1
22 +1

)
<

π

6
n2

where the last inequality follows from the series expansion of π/6. Thus, for any constant c > 0, we obtain
the upper bound

Pr [|T −E[T ]| ≥ cn]≤ Var[T ]
c2n2 <

1
c2 (16)
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by Chebyshev’s inequality.

4.2 Idea 2: Use the union bound

Instead of computing the expected number of balls thrown before all bins are non-empty, we can try to
compute the probability of successfully ending with all non-empty bins after a fixed number of throws, m.
For 1 ≤ i ≤ m, let Ai be the event that the i’th bin is empty after all m throws. Then we have success if
and only if no event Ai occurs for each i. The probability of all m (independent) throws avoid the i’th bin is
(n−1)/n = (1−1/n), so we have:

Pr[Ai] = (1−1/n)m = ((1−1/n)n)m/n ≈ e−m/n. (17)

By applying the union bound we get:

Pr[ failure ] = Pr

[
n⋃

i=1

Ai

]
≤

n

∑
i=1

Pr[Ai] = ne−m/n. (18)

It follows that when m = n logn+n, the probability of failure at most ne−(n logn+n)/n = ne− logn−1 = e−1, so
the probability of success is at least 1−1/e for that case.

5 Summary

In this lecture, we went through some simple problems in the setting of independently throwing balls into
bins. We used Markov’s inequality, Chebyshev’s inequality, and the union bound in order to obtain upper
and lower bounds for various probabilities and expectations. We also saw the trick of approximating 1+ x
with ex for x ∈ [−1,1] which can be quite useful when dealing with probabilities.
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