ASSIGNMENT 6 COURSE: COMPSCI 230

Due on March 18, 2019
61 points total

General directions: We will exclusively use Python 3 for our programming assignments, and allow
only the use of modules in the Python 3 standard library unless explicitly specified otherwise on an
individual assignment basis. This forbids the use of common third-party libraries such as Numpy,
Sympy, etc., but not the use of math or io.

Unless specified otherwise, for the X-th homework, download the single “hwX_skeleton.py”
file from the course website, and rename it to “hwX.py” on your machine. When you are done and
ready to submit, upload your file named exactly “hwX.py” on Gradescope for assignment “HW X
(Programming).” When you upload your file, the autograder will run a simple test for each function
so that you can confirm it was properly uploaded and executed. Generally, if an assignment involves
printing or writing a file in a specific format, there will be at least one simple test that checks your
output is formatted as we expect. These tests are not worth any credit — once the due date is over,
your submission will be graded by a collection of additional test cases.

All answers to non-programming questions must be typed, preferably using I&IEX. If you are
unfamiliar with I£TEX, you are strongly encouraged to learn it. However, answers typed in other
text processing software and properly converted to a PDF file will also be accepted. To submit your
file, upload your PDF on Gradescope for assignment “HW X (PDF).” Handwritten answers or PDF
files that cannot be opened will not be graded and will not receive any credit.

Finally, please read the detailed collaboration policy given on the course website. You are not
allowed to discuss homework problems in groups of more than 3 students. Failure to adhere to
these guidelines will be promptly reported to the relevant authority without exception.

Point values: Every problem has a specified amount of points which are awarded for the cor-
rectness of your solutions. In addition, each proof-oriented problem has an additional style point.
In the homework handout, this is signified by a “+1” in the point value. To earn this point, your
solutions should be clear, well organized, and easy to follow. This is to encourage not only perfectly
correct solutions, but well presented ones.

March 4, 2019 Page 1


https://www.python.org/downloads/
https://docs.python.org/3/library/index.html
https://www.latex-project.org/get/

ASSIGNMENT 6 COURSE: COMPSCI 230

Problem 1 (10+1 points)
Prove the following by induction: the number of ways to order n people is the product of the first n
positive integers.

Problem 2 (10+1 points)
For any node v in a binary tree, let A[u] denote the value stored at u. A binary min-heap is a rooted
binary tree with the following property: if u is the parent of v, then A[u] < A[v].

Prove that the minimum value in a binary min-heap is stored at the root.

Problem 3 (20+1 points)

A walk in an undirected graph is a sequence of vertices such that there exists an edge between
every two consecutive vertices in the sequence. A walk traverses an edge if its endpoints appear
consecutively in the walk. An Eulerian circuit is a walk that traverses each edge exactly once, and
starts and ends at the same vertex.

Let G = (V, E) be an undirected connected graph with n vertices and m edges. Prove the following
by induction: G has an Eulerian circuit if and only if the degree of every vertex in G is even.

Problem 4 (18 points)

Programming: In Lecture 13, we defined a graph as an ordered pair (V, E') where V' is a non-empty
finite set and E is a set of two-element subsets of V. Thus, one way to represent a graph is by
explicitly listing its vertices and edges. However, in practice, the two most common representations
are the adjacency list and adjacency matrix representations, which we define below.

Let G = (V, E) be a graph with n vertices. For this problem, we assume V' = {0, 1,...,n—1}.
Recall that for all u € V, we say vertex v is a neighbor of u if (u,v) € E. The adjacency list
representation of G is a list L of lists of vertices such that L[u] contains the neighbors of vertex
u. The adjacency matrix representation of G is an n X n matrix M where M[u,v] = 1if vis a
neighbor of u, and O otherwise.

For this problem, you will implement three functions as documented in “hw6_skeleton.py”
which is on the course website as usual: getAdjacencyList (V,E),getAdjacencyMatrix (V, E),
and getDegreelist (V, E). Note that we have also included a handful of helper functions and
examples that you can use to test your code. For more details, see the skeleton file.

March 4, 2019 Page 2



