COMPSCI 230: Discrete Mathematics for Computer Science March 4, 2019

Lecture 14

Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In Lecture 13, we introduced the notion of perfect matchings in bipartite graphs. We also saw Hall’s
Theorem, which tells us when a bipartite graph has a perfect matching. In this lecture, we give a
proof of Hall’s Theorem.

2 Hall’s Theorem

In this section, we re-state and prove Hall’s theorem. Recall that in a bipartite graph G = (AU B, E),
an A-perfect matching is a subset of E that matches every vertex of A to exactly one vertex of B,
and doesn’t match any vertex of B more than once.

Theorem 1 (Hall 1935). A bipartite graph G = (A U B, E) has an A-perfect matching if and only if the
following condition holds:
VS C A IN(S)| > |S],

where N(S) = {v € B:3Ju € S.{u,v} € E.}.

Remark 1: If |A| = |B|, then a matching is A-perfect if and only if it is perfect. So, in this case,
Hall’s theorem tells us when a perfect matching exists. On the other hand, if |A| # |B|, then G
cannot contain a perfect matching because every edge of a matching pairs one vertex of A with
exactly one vertex of B. However, if |A| < |B|, then G may still contain an A-perfect matching.

Remark 2: Theorem 1 is of the form P <+ Q, where P is the proposition “G has an A-perfect
matching” and Q is known as Hall’s condition. In general, P — Q states that Q is a necessary
condition for P. (To see why, consider the contrapositive -Q — —P.) Furthermore, Q — P states
that Q is a sufficient condition for P. Thus, Hall’s theorem states that Hall’s condition is a necessary
and sufficient condition for a bipartite graph to have an A-perfect matching.

Proof. We now begin the proof of Theorem 1.

Hall’s condition is necessary: Assume that G has an A-perfect matching, which we denote by M.
Let S be an arbitrary subset of A. Since M is an A-perfect matching, M matches every vertex of S
to exactly one vertex of B, and no vertex of B is matched more than once. So if we restrict G to the
edges in M, the vertices of S each have a distinct neighbor in N(S). Since N(S) is defined using all
the edges of G and M is only a subset of E, this implies [N(S)| > |S|.

Hall’s condition is sufficient: We will construct an A-perfect matching M by proceeding with
induction on |A|, assuming G satisfies Hall’s condition.

Base case: |A| = 1. Let a denote the sole vertex of A. Hall’s condition tells us |[N({a})| > 1,
which means 4 has at least one neighbor. We can set M = {{a,b}} where b is any neighbor of a.
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Then, M is an A-perfect matching: every vertex of A is matched, and no vertex of B is matched
more than once.

Inductive hypothesis (IH): Assume that for all k such that 1 < k < |A| — 1, any bipartite graph
H = (CUD, F) satisfying |C| = k has a C-perfect matching if and only if H satisfies Hall’s condition
onC,ie., VS C C.IN(S)| > S|

Inductive step: We will now construct an A-perfect matching M in G, starting with M = @. Note
that when G satisfies Hall’s condition, there are two possible cases: the inequality is strict for every
S that is a strict subset of A (i.e., VS C A.|N(S)| > |S|), or there exists at least one S C A such that
IN(S)[ = [S].

(i) In the first case, since |[N(S)| and |S| are integers, we can assume
VS C A.IN(S)| > |S|+ 1. (1)
We claim that the following procedure returns a perfect matching:

1. Let u be an arbitrary vertex of A, and add any edge e = {u, v} of E to M.
2. Remove u,v, and all edges incident to u or v from G to construct graph G'.
3. By the IH, G’ has a matching M’ thatis (A \ {u})-perfect.

4. Add the edges of M’ to M, and return M.
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Figure 1: The original graph G with an ar- Figure 2: Applying the IH on G’ yields a
bitrary edge {u,v} added to M (bold). The matching M’ thatis (A \ {u})-perfect. The
graph G’ comprises the remaining vertices. edges of the final matching M are in bold.

For this procedure to be correct, we have to show several properties. First, to show that Step 1
is valid, we need to establish that the degree of any vertex u € A is at least 1. If this does not
hold, then N({u}) = 0, while |[{u}| = 1, thereby violating Hall’s condition for S = {u}.

Next, we show that G’ satisfies Hall’s condition so that Step 3 is valid. Let S’ be any subset
of A\ {u}, and let N'(S’) denote its neighbors in G’ (so N'(S") C B\ {v}). Notice that
IN(S")| =1 > |S'| because of (1). Since we only removed one vertex of B to construct G/,
IN'(S")] > |N(S")| — 1. Taken together, these inequalities imply |N’(S’)| > |S’|, as desired.

Now we must show that M = M' U {{u, v} } is an A-perfect matching. Since M’ matches every
vertex of A\ {u} and e matches u, every vertex of A is indeed matched by M. Furthermore,
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vertex v is matched once because G’ excludes v, and the vertices of B \ {v} are matched at
most once because M’ is a matching. Thus, M is an A-perfect matching.

(ii) In the second case, we assume there exists S C A such that [N(S)| = |S|. We claim that the
following procedure returns a perfect matching:

1. Partition Ainto Sand S = A\ S and B into N(S) and N(S) = B\ N(S).
2. Let G; = (SUN(S), E1) where E; denotes the edges of G among S U N(S). By the IH, G;
has a matching M; that is S-perfect.

3. Let G, = (SUN(S), Ez), where E; denotes the edges of G among S U N(S). By the IH, G,
has a matching M, that is S-perfect.

4. Let M = Mj; U M>, and return M.
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Figure 3: Partitioning A and B according to Figure 4: Applying the IH on G; and G; and
S and N(S); notice that |[N(S)| = |S]. returning the union of the two matchings.

As in the previous case, we must prove that G; and G; satisfy Hall’s condition so that Step 2
and Step 3 are valid. The graph G; is easier to handle: observe that there are no edges from S to
N(S). Thus, for any subset T of S, its neighborhood in G; is exactly the same as its neighborhood
in G. Since G satisfies Hall’s condition, this implies G; also satisfies Hall’s condition.

Showing that G, also satisfies Hall’s condition is slightly trickier. For contradiction, suppose G
violates Hall’s condition. This means there exists X C S such that |Y| < | X|, where Y denotes the
neighborhood of X in Gy, i.e., Y = N(X) N N(S). Now consider the set S U X. This is a subset of A,
so since G satisfies Hall’s condition, we know that

IN(SUX)| > |SUX].

Furthermore, since S and X are disjoint, |S U X| = |S| + | X|. Also, notice that the only neighbors of

S U X contained in N (S) are the neighbors of X, i.e., N(SU X) = N(S) UY. Finally, since N(S) and
Y are disjoint, we know that [N(S) UY| = |N(S)| + |Y|. Putting this all together, we get

IN(SUX)| =|N(S)UY]| (definitions of S, X, Y)
= |N(S)|+ |Y] (N(S) and Y are disjoint)
= |S|+ Y] (defining property of S)
< |S] + |X]| (defining property of X)
=[SUX]. (S and X are disjoint)
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Thus, the set S U X violates Hall’s condition in the original graph G because [N(SU X)| < [SU X]|.
This concludes the proof that G, satisfies Hall’s condition.

Now that we know G; and G; satisfy Hall’s condition, we must show that M = M; U M, is
an A-perfect matching. Since M; is S-perfect and M is S-perfect, we know that M matches every
vertex of SU S = A. Furthermore, no edges of M; and M share an endpoint because M; and M,

were obtained from two disjoint graphs G; and G,. Thus, no vertex of B is matched twice by M, so
M is an A-perfect matching. O

3 Summary

In this lecture, we proved Hall’s theorem, one of the most well-known results in discrete mathemat-

ics. The proof uses induction in a manner that is more complicated than typical induction proofs
we have seen.
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