COMPSCI 230: Discrete Mathematics for Computer Science Lecture 14 Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In Lecture 13, we introduced the notion of perfect matchings in bipartite graphs. We also saw Hall's Theorem, which tells us when a bipartite graph has a perfect matching. In this lecture, we give a proof of Hall's Theorem.

2 Hall's Theorem

In this section, we re-state and prove Hall's theorem. Recall that in a bipartite graph $G = (A \cup B, E)$, an A-perfect matching is a subset of E that matches every vertex of A to exactly one vertex of B, and doesn't match any vertex of B more than once.

Theorem 1 (Hall 1935). A bipartite graph $G = (A \cup B, E)$ has an A-perfect matching if and only if the following condition holds:

$$\forall S \subseteq A. |N(S)| \geq |S|,$$

where $N(S) = \{v \in B : \exists u \in S. \{u, v\} \in E.\}.$

Remark 1: If |A| = |B|, then a matching is *A*-perfect if and only if it is perfect. So, in this case, Hall's theorem tells us when a *perfect* matching exists. On the other hand, if $|A| \neq |B|$, then *G* cannot contain a perfect matching because every edge of a matching pairs one vertex of *A* with exactly one vertex of *B*. However, if |A| < |B|, then *G* may still contain an *A*-perfect matching.

Remark 2: Theorem 1 is of the form $P \leftrightarrow Q$, where P is the proposition "G has an A-perfect matching" and Q is known as Hall's condition. In general, $P \rightarrow Q$ states that Q is a necessary condition for P. (To see why, consider the contrapositive $\neg Q \rightarrow \neg P$.) Furthermore, $Q \rightarrow P$ states that Q is a *sufficient* condition for P. Thus, Hall's theorem states that Hall's condition is a necessary and sufficient condition for a bipartite graph to have an A-perfect matching.

Proof. We now begin the proof of Theorem 1.

Hall's condition is necessary: Assume that G has an A-perfect matching, which we denote by M. Let S be an arbitrary subset of A. Since M is an A-perfect matching, M matches every vertex of S to exactly one vertex of B, and no vertex of B is matched more than once. So if we restrict G to the edges in M, the vertices of S each have a distinct neighbor in N(S). Since N(S) is defined using A the edges of B and B is only a B subset of B, this implies B implies B is B.

Hall's condition is sufficient: We will construct an A-perfect matching M by proceeding with induction on |A|, assuming G satisfies Hall's condition.

Base case: |A| = 1. Let a denote the sole vertex of A. Hall's condition tells us $|N(\{a\})| \ge 1$, which means a has at least one neighbor. We can set $M = \{\{a,b\}\}$ where b is any neighbor of a.

Then, *M* is an *A*-perfect matching: every vertex of *A* is matched, and no vertex of *B* is matched more than once.

Inductive hypothesis (IH): Assume that for all k such that $1 \le k \le |A| - 1$, any bipartite graph $H = (C \cup D, F)$ satisfying |C| = k has a C-perfect matching if and only if H satisfies Hall's condition on C, i.e., $\forall S \subseteq C$. $|N(S)| \ge |S|$.

Inductive step: We will now construct an A-perfect matching M in G, starting with $M = \emptyset$. Note that when G satisfies Hall's condition, there are two possible cases: the inequality is strict for every S that is a strict subset of A (i.e., $\forall S \subset A$. |N(S)| > |S|), or there exists at least one $S \subset A$ such that |N(S)| = |S|.

(i) In the first case, since |N(S)| and |S| are integers, we can assume

$$\forall S \subset A. |N(S)| \ge |S| + 1. \tag{1}$$

We claim that the following procedure returns a perfect matching:

- 1. Let *u* be an arbitrary vertex of *A*, and add *any* edge $e = \{u, v\}$ of *E* to *M*.
- 2. Remove u, v, and all edges incident to u or v from G to construct graph G'.
- 3. By the IH, G' has a matching M' that is $(A \setminus \{u\})$ -perfect.
- 4. Add the edges of M' to M, and return M.

Figure 1: The original graph G with an arbitrary edge $\{u,v\}$ added to M (bold). The graph G' comprises the remaining vertices.

Figure 2: Applying the IH on G' yields a matching M' that is $(A \setminus \{u\})$ -perfect. The edges of the final matching M are in bold.

For this procedure to be correct, we have to show several properties. First, to show that Step 1 is valid, we need to establish that the degree of any vertex $u \in A$ is at least 1. If this does not hold, then $N(\{u\}) = 0$, while $|\{u\}| = 1$, thereby violating Hall's condition for $S = \{u\}$.

Next, we show that G' satisfies Hall's condition so that Step 3 is valid. Let S' be any subset of $A \setminus \{u\}$, and let N'(S') denote its neighbors in G' (so $N'(S') \subseteq B \setminus \{v\}$). Notice that $|N(S')| - 1 \ge |S'|$ because of (1). Since we only removed one vertex of B to construct G', $|N'(S')| \ge |N(S')| - 1$. Taken together, these inequalities imply $|N'(S')| \ge |S'|$, as desired.

Now we must show that $M = M' \cup \{\{u, v\}\}$ is an A-perfect matching. Since M' matches every vertex of $A \setminus \{u\}$ and e matches u, every vertex of A is indeed matched by M. Furthermore,

vertex v is matched once because G' excludes v, and the vertices of $B \setminus \{v\}$ are matched at most once because M' is a matching. Thus, M is an A-perfect matching.

- (ii) In the second case, we assume there exists $S \subset A$ such that |N(S)| = |S|. We claim that the following procedure returns a perfect matching:
 - 1. Partition *A* into *S* and $\overline{S} = A \setminus S$ and *B* into N(S) and $\overline{N(S)} = B \setminus N(S)$.
 - 2. Let $G_1 = (S \cup N(S), E_1)$ where E_1 denotes the edges of G among $S \cup N(S)$. By the IH, G_1 has a matching M_1 that is S-perfect.
 - 3. Let $G_2 = (\overline{S} \cup \overline{N(S)}, E_2)$, where E_2 denotes the edges of G among $\overline{S} \cup \overline{N(S)}$. By the IH, G_2 has a matching M_2 that is \overline{S} -perfect.
 - 4. Let $M = M_1 \cup M_2$, and return M.

 G_1 G_2 G_2

Figure 3: Partitioning *A* and *B* according to *S* and N(S); notice that |N(S)| = |S|.

Figure 4: Applying the IH on G_1 and G_2 and returning the union of the two matchings.

As in the previous case, we must prove that G_1 and G_2 satisfy Hall's condition so that Step 2 and Step 3 are valid. The graph G_1 is easier to handle: observe that there are no edges from S to $\overline{N(S)}$. Thus, for any subset T of S, its neighborhood in G_1 is exactly the same as its neighborhood in G. Since G satisfies Hall's condition, this implies G_1 also satisfies Hall's condition.

Showing that G_2 also satisfies Hall's condition is slightly trickier. For contradiction, suppose G_2 violates Hall's condition. This means there exists $X \subseteq \overline{S}$ such that |Y| < |X|, where Y denotes the neighborhood of X in G_2 , i.e., $Y = N(X) \cap \overline{N(S)}$. Now consider the set $S \cup X$. This is a subset of A, so since G satisfies Hall's condition, we know that

$$|N(S \cup X)| \ge |S \cup X|$$
.

Furthermore, since S and X are disjoint, $|S \cup X| = |S| + |X|$. Also, notice that the only neighbors of $S \cup X$ contained in $\overline{N(S)}$ are the neighbors of X, i.e., $N(S \cup X) = N(S) \cup Y$. Finally, since N(S) and Y are disjoint, we know that $|N(S) \cup Y| = |N(S)| + |Y|$. Putting this all together, we get

$$|N(S \cup X)| = |N(S) \cup Y|$$
 (definitions of S, X, Y)
 $= |N(S)| + |Y|$ ($N(S)$ and Y are disjoint)
 $= |S| + |Y|$ (defining property of S)
 $< |S| + |X|$ (defining property of X)
 $= |S \cup X|$. (S and X are disjoint)

Thus, the set $S \cup X$ violates Hall's condition in the original graph G because $|N(S \cup X)| < |S \cup X|$. This concludes the proof that G_2 satisfies Hall's condition.

Now that we know G_1 and G_2 satisfy Hall's condition, we must show that $M = M_1 \cup M_2$ is an A-perfect matching. Since M_1 is S-perfect and M_2 is \overline{S} -perfect, we know that M matches every vertex of $S \cup \overline{S} = A$. Furthermore, no edges of M_1 and M_2 share an endpoint because M_1 and M_2 were obtained from two disjoint graphs G_1 and G_2 . Thus, no vertex of B is matched twice by M, so M is an A-perfect matching.

3 Summary

In this lecture, we proved Hall's theorem, one of the most well-known results in discrete mathematics. The proof uses induction in a manner that is more complicated than typical induction proofs we have seen.