COMPSCI 230: Discrete Mathematics for Computer Science March 20, 2019

Lecture 17
Lecturer: Debmalya Panigrahi Scribe: Erin Taylor

1 Overview

In this lecture, we introduce directed graphs. We study connectivity in directed graphs. Finally, we
introduce acyclic directed graphs, an important type of directed graphs.

2 Directed Graphs

2.1 Definitions

So far, we have worked with simple undirected graphs. Now we will introduce a new type of
graph: directed graphs, also called digraphs. As usual, G = (V, E) and V is a finite, non-empty set
of vertices. Now, our edges will have directions. So, if (u,v) € E, the edge is directed from u to v.
We will assume that our graphs have no self-loops, so edges of the form (v, v) will not be included
in E. Thus, EC V x V\ {(v,v) : Yv € V}. Asusual, we let |E| = m and |V| = n. See Figure 1 for
an example of a directed graph.

Figure 1: A directed graph.

Definition 1. The in-degree of a vertex, denoted d;, (v), is the number of incoming edges incident on a

vertex:
din(v) = |{(u,v) € E:u e V}|.

Definition 2. The out-degree of a vertex, denoted dy,;(v), is the number of outgoing edges incident on a

vertex:
dout(v) = |[{(v,u) € E:u € V}|.

Lemma 1.

Y din(v) = Y dout(v) = m

veV veV

Proof. Intuitively, an edge (1, v) contributes one to the in-degree of vertex v and the out-degree of
vertex u. We will prove this formally by induction on the number of edges.
Base case: If |E| = 0, then every vertex has in-degree and out-degree 0 and the Lemma holds.
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Inductive hypothesis: Let m be an arbitrary positive integer. For any graph G’ with m’ < m
edges, assume Y, oy diy (0) = Ypey dout(v) = m'.

Inductive step: Fix an arbitrary edge of G and remove it. Let this edge be ¢ = (1,v). Let
G' = (V,E') where E' = E\ {(u,v)}. G’ is a graph with m — 1 edges. Let d’(v) be the degree of
v € Vin G'. By our inductive hypothesis,

Z din(v) = Z dout(v) = m — 1.

veV veV

Forallv € V\ {u,v}, d,,,(v) = dow(v) and d}, = d;,(v). Additionally, the in-degree of u did
not change, since we removed an outgoing edge from u. The out-degree of u decreased by 1:
dout (1) = 14 d},,,(u). Likewise, we removed an incoming edge from v, so d;,(v) = 1+d’, (v). The

out-degree of v did not change. The out-degrees:

Z dout(v) =1+ Zdﬁ,ut(v) =14+m—-1=m.

veV veV

The in-degrees:

Y diw(v)=1+) dj,(v)=1+m—1=m.

veV veV
Thus, Y ,cy din(v) = Ypev dout(v) = m as desired. Therefore, Lemma 1 holds for any directed
graph. O

Paths and walks are defined identically in undirected and directed graphs. A walk in a digraph
is a sequence of vertices such that there exists a directed edge from each vertex to the next vertex
on the walk. A path is a walk that does not repeat vertices. Figure 2 shows an example of a directed
path.

() () () ()
O )—0© ) —A—A)—©
Figure 2: A valid directed path from a to c. Figure 3: An example where there is no path
fromatoe.

Observe that paths may only go in one direction in directed graphs (a path may exist from u
to v, but not from v to u). In Figure 3, see that there is no path from a to d. Next, we will define
connectivity in digraphs.

2.2 Connected Components

In undirected graphs, the relation defined by connectivity was an equivalence relation, but in
digraphs we have seen that connectivity is no longer as straightforward. We give two notions of
connectivity for digraphs.

Definition 3. Vertices a and b are strongly connected if there is a path from a to b and a path from b to a.

Definition 4. Vertices a and b are weakly connected if there is a path from a to b. (Note that there may or
may not be a path from b to a).
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Consider the relation defined by weak connectivity. We say that vertices are vacuously con-
nected to themselves, so it is reflexive. The relation is also transitive, but not symmetric. For
example, in Figure 3, a, b are weakly connected, but b, a are not weakly connected.

However, the relation defined by strong connectivity is an equivalence relation on the vertices
of a directed graph. We verify the three necessary properties.

e Reflexivity: For any vertex v, v is (vacuously) strongly connected to itself.

e Symmetry: This follows from the symmetry of the definition of strong connectivity. If s and
t are strongly connected, then there is a path from s to t and a path from ¢ to s, so ¢ is also
strongly connected to s.

e Transitivity: Suppose vertex a is strongly connected to vertex b and vertex b is strongly
connected to vertex c. This implies there exists a path from a to b and a path from b to c.
We can combine these two paths to obtain a walk from a to c. This implies there is a path
from a to c. Similarly, there exists a path from c to b and a path from b to 2. Combining these
paths, we obtain a walk from c to a. This implies there is a path from c to a. Thus, 4 and c are
strongly connected, and the relation is transitive.

Definition 5. Strongly connected components are the equivalence classes of the equivalence relation
strong connectivity on the vertices of a directed graph.

Consider a directed cycle, such as the one shown in Figure 4. The vertices in a cycle are strongly
connected. Thus, a directed cycle has a single strongly connected component.

Figure 4: A directed cycle.

Now, consider a directed graph that does not have any cycle. Such a digraph is called a directed
acyclic graph (DAG). The strongly connected components in a DAG are the singleton vertices. We
will prove this with the following claim.

Claim 2. In a DAG, no two vertices can be strongly connected.

Before we prove this Claim, we will prove a useful lemma.
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Figure 5: Base Case of Proof Figure 6: Disjoint paths from Figure 7: Non-disjoint paths
of Lemma 3. atoband b toa. from a to b and b to a.

Lemma 3. Suppose G = (V, E) is a directed graph. If there is a path from vertex a to vertex b and a path
from b to a, then there is a cycle containing a in G.

Proof. Suppose we have directed graph G = (V, E) in which there is a path from vertex a to vertex
b and a path from b to a. Let P be the path from a to b and Q be the path from b to a. We will prove
Lemma 3 by induction on the sum of the lengths of the paths: ¢ = |P| + |Q].

Base case: The smallest possible distinct paths from a to b and b to a are two paths consisting of
one edge each. In this case, (a,b), (b,a) € E and these two edges form a cycle.

Inductive hypothesis: Assume the lemma holds for paths P/, Q' such that |P'| + |Q’| < £.

Inductive step: Suppose we have a graph containing paths P, Q where ¢ = |P| 4 |Q|. If P and
Q are disjoint, then P + Q is a cycle containing a. Otherwise, paths P and Q share a vertex. Let this
vertex be x. Consider the subset of path P from a to x, let this be P’ Similarly, let Q' be the subset
of Q starting at x and ending at a. |P'| + |Q’| < ¢ since |P'| < |P| and |Q'| < |Q|. By the inductive
hypothesis, there exists a cycle containing a. Thus, in all cases the Lemma holds. O

Now the proof of Claim 2 is straightforward.

Proof of Claim 2. We will prove the claim by contradiction. Assume two vertices in a DAG are
strongly connected, let these be vertices u and v. This implies there is a path from u to v and a path
from v to u. By Lemma 3, there is a cycle containing u. This contradicts that the graph is a DAG.
Thus, no two vertices are strongly connected in a DAG. O

2.3 Structure Of Directed Graphs

Strongly connected components and DAGs are useful for describing the structure of any directed
graph. Consider ‘contracting’ each strongly connected component of a graph into a single vertex,
and add an edge from one component to another component if there is an edge from some vertex
in the first component to some vertex in the second. The result of this procedure is another directed
graph, and it is acyclic. Intuitively, if there was a cycle containing multiple strongly connected
components then they could be merged into a single strongly connected component. See Figure 8
for an example. Thus, any directed graph is a DAG on its strongly connected components. We will
state and prove this theorem formally.

17-4



Figure 8: A directed graph and its strongly Figure 9: The component graph of the graph
connected components (each in a dashed in Figure 8.
box).

Definition 6. Suppose a directed graph G = (V, E) has strongly connected components C1,Cs, ..., Ck.
The component graph of G is G°C = (V5CC, ESCC) where VSC© = {1,...,k} and E5CC = {(i,j) :
3(u,v) € Est.u € C;, veC}.

Theorem 4. Every component graph is a DAG.

Proof. We will prove this theorem by contradiction. Suppose there exists a component graph
containing a cycle. Let G = (V, E) be the underlying directed graph, and G°“C be the component
graph of G. Suppose C = cy,..., ¢ are vertices in G°C© forming a cycle. Let Cy,...Cy be the
corresponding strongly connected components of G.

Since C is a cycle, there must be an edge between components C; and C;;; in the cycle (for
i=1,...,k—1. Let such an edge be (out;, inj;1) € E fori € 1,...,k — 1. Intuitively, out; is the
vertex in C; with an outgoing edge to C; ;. Similarly, in; is the incoming edge form the previous
component in the cycle. Also, there is an edge from Ci to Cy, so (outy,iny) € E. Within any
component, there is a path from in; to out;, because all vertices in this component are strongly
connected. Thus, for any two components in a cycle, there is a path from the outgoing vertex of the
tirst component to the incoming vertex of the second component.

Suppose C;, C; are two components in this cycle. Let u, v € G be vertices such that u € C; and
v € Cj. u,v are in different strongly connected components in G, so there cannot be paths both
from u to v and from v to u in G.

Since ¢; and ¢; are vertices in a cycle, there exists a path from some the outgoing vertex of C;
to the incoming vertex of C; by the previous argument. C; is a strongly connected component, so
there must exist a path from u to out;. Similarly, C; is a strongly connected component, so there
must exist a path from in; to v. By concatenating these three paths, we have found a path in G from
utowv.

We can similarly find a path from v to u. Since ¢; and ¢; are in a cycle, there exists a path from
some vertex out; € C; to some vertex in in; € C; by the earlier argument. Since C; is a strongly
connected component, there exists a path from v to Cj. Similarly, since C; is a strongly connected
component, there exists a path from c; to u. By concatenating these three paths, we have found a
path in G from v to u.

We have showed there is a path from u to v and from v to u in G. However, u and v were
assumed to be in different strongly connected components. This is a contradiction. O
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3 Summary

In this lecture, we introduced directed graphs and explored the differences between directed and
undirected graphs. We then studied connectivity in digraphs, both weak and strong. Finally, we
showed that connectivity allows us to make generalizations about the structure of all directed
graphs.
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