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1 Overview

In this lecture, we will look at the fundamentals of probability theory. We begin with a classic
problem whose result, at first glance, might seem counterintuitive. Afterwards, we formalize the
our intuition of probability and present multiple applications.

2 The Monty Hall Problem

The Monty Hall problem is a classic problem that highlights the limitations of intuitive reasoning
in probability theory. The problem goes as follows: you are on a game show, and there are three
closed doors A, B, C. Behind one door is a car, and behind the other two are goats. Each door is
equally likely to hide the car. You want the car, but you don’t know which door to pick, so you go
with A. The game host, who knows which door hides the car, then reveals a goat behind B. At this
point, should you switch to C, or stick with A? Maybe the odds are now 50/50, so does it even
matter?

Before proceeding, we state the rules of the game more formally. In general, the host will always
open a door that contains a goat, and the host never opens the door you initially pick. If the door
you pick hides a goat, then the host only has one choice of door to open. If the door you pick hides
the car, then the host randomly picks each of the other two doors with equal probability.

At first glance, one probably thinks that switching doesn’t matter: after the host opens B, there
are two remaining doors. We still can’t decide between A or C with certainty, so we might as well
stick with A. However, this intuition is incorrect: as we shall see, to maximize the probability of
winning the car, you should always switch.

So our objective is to compare the following three strategies: “keep A” and “always switch”.
Recall that when the game is set up, each door is equally likely to hide the car. So let us evaluate the
performance of each strategy over the long run, that is, if we played many games in a row using
each strategy:

• Keep A: Since A hides the car 1/3 of the time, this strategy wins roughly 1/3 of the games.

• Always Switch: If A hides the car (which happens roughly 1/3 of the time), then this strategy
loses. However, if B or C hides the car, then the host opens C or B respectively. In these cases,
switching wins! Thus, this strategy loses roughly 1/3 games, so it wins roughly 2/3 games.

As we can see, the “always switch” strategy performs better over the long run. In the subsequent
sections, we will formalize our intuitive understanding of probability and apply it to a variety of
problems.
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3 Formalizing Probability

The foundations of mathematical probability lie in set theory, which at this point, we already
understand fairly well. In general, when reasoning about probability, we must consider the set of
all possible outcomes and the likelihood of each one; the formal definitions are given below.

Definition 1. A sample space is a non-empty countable set. An outcome is an element of a sample space,
and an event is a subset of the sample space (i.e., a set of outcomes). If A is an event of a sample space S,
then we let A = S \ A denote the complement of A.

Now recall that if a, b are real numbers and a ≤ b, then [a, b] denotes the set {x ∈ R : a ≤ x ≤ b}.

Definition 2. If S is a sample space, then a probability function on S is a total function Pr : S→ [0, 1]
that satisfies ∑x∈S Pr(x) = 1. If x ∈ S is an outcome, then Pr(x) denotes the probability of x. If A ⊆ S is
an event, then Pr(A) is defined as ∑x∈A Pr(x) and denotes the probability of A.

As we can see, a probability function specifies a value Pr(x) ∈ [0, 1] for every outcome x ∈ S.
Furthermore, the requirement ∑x∈S Pr(x) = 1 is equivalent to Pr(S) = 1; this formalizes our
intuition that no matter what happens, the outcome will definitely be an element of S.

3.1 Probability Rules

Now that we have formalized the definitions related to probability, we can start studying some
fundamental rules that allow us to reason about probabilistic events. Intuitively, we can reason
about these rules as follows: the sample space S is a large dartboard, and an event A is a small
region of the dartboard. Then the value of Pr(A) represents the ratio of the area of A to the area of
S. Throughout the following, we let A and B denote events, i.e., subsets of a sample space S.

1. Sum Rule: If A and B are disjoint events, then Pr(A ∪ B) = Pr(A) + Pr(B).

2. Inclusion-Exclusion: For any events A and B, Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B).
In our dartboard analogy, this corresponds to finding the area of A ∪ B, and so the rule
follows from the principle of inclusion-exclusion that we saw in our lecture on combinatorics.
Notice that the sum rule is a special case of inclusion-exclusion: if A and B are disjoint, then
Pr(A ∩ B) = 0. We now discuss two other special cases of inclusion-exclusion.

(a) Boole’s inequality: Pr(A ∪ B) ≤ Pr(A) + Pr(B). This follows directly from inclusion-
exclusion because Pr(A ∩ B) ≥ 0.

(b) Union bound: For any set of events, the probability of their union is at most the sum of
the probability of each event. In other words, if A1, A2, . . . are events, then

Pr(A1 ∪ A2 ∪ · · · ) ≤ Pr(A1) + Pr(A2) + · · · .

Note that this bound holds for a finite set of events, as well as an infinite set.

3. Difference Rule: Pr(A \ B) = Pr(A)− Pr(A ∩ B). This rule follows by observing that any
event A can be partitioned into the disjoint events A \ B and A ∩ B.

(a) Complement Rule: Pr(B) = 1− Pr(B). This rule follows from the difference rule by
setting A = S, in which case A \ B = B and Pr(A) = Pr(S) = 1.
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(b) Monotonicity Rule: If A ⊆ B, then Pr(A) ≤ Pr(B). This rule is known as monotonicity
because it states that the Pr function does not decrease if we add outcomes to the event.

In everyday life, we often use these rules without noticing. However, as we have seen, informal
justifications of probability can lead to incorrect results, so a formal mathematical understanding of
these rules is critical.

3.2 Probabilistic Reasoning

Now that we have a list of rules, we can state a high-level strategy for reasoning about probabilistic
events. Whenever faced with a probability problem, one should consider the following strategy:

1. Determine the sample space (i.e., the set of all possible outcomes).

2. Define the interesting event (i.e., the subset containing all interesting outcomes).

3. Calculate the probability of each outcome.

4. Calculate the probability of the event.

In this section, we will apply this strategy in several scenarios.

Rolling a Fair Die: Suppose we roll a fair 6-sided die once; let X denote the outcome of this roll.
Here, the sample space is simply {E1, E2, E3, E4, E5, E6}, where Ei denotes the outcome “X = i”.
Since the die is fair, each outcome occurs with probability 1/6; in other words,

Pr(E1) = Pr(E2) = · · · = Pr(E6) =
1
6

.

Now let us formally calculate the probability that X is even. If we let A denote this event, then
A = {E2, E4, E6}. Since each outcome in A occurs with probability 1/6 and all outcomes are disjoint,
we can apply the sum rule to obtain Pr(A) = 3/6 = 1/2, which matches our intuition.

Now consider the event containing outcomes where X is even or prime. Let B denote this event,
and notice that there are multiple ways of calculating B:

1. Sum Rule: Since B = {E2, E3, . . . , E6} and all outcomes are disjoint, we can conclude Pr(B) =
Pr(E2) + Pr(E3) + · · ·+ Pr(E6) = 5/6.

2. Complement Rule: Notice that B = {E1}, so Pr(B) = 1/6. This implies Pr(B) = 1− 1/6 = 5/6.

3. Inclusion-exclusion: Recall that B must capture the event that X is even or prime. Therefore,
B = V ∪ P where V = {E2, E4, E6} (evens) and P = {E2, E3, E5} (primes), and so V ∩ P = {E2}.
By inclusion-exclusion, we have Pr(B) = Pr(V) + Pr(P)− Pr(V ∩ P) = 3/6 + 3/6− 1/6 = 5/6.

Rolling an Unfair Die: Now let’s roll another 6-sided die, and let Y denote the outcome of this roll.
The sample space is still {E1, . . . E6}, where Ei denotes the outcome “Y = i”. However, unlike the
previous die, this die is not fair: for every i ∈ {1, 2, . . . , 5}, this die is twice as likely to roll i than
i + 1. In other words, the die obeys the following probability function:

Pr(Ei) = 2 · Pr(Ei+1) ∀i ∈ {1, . . . , 5}.
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Since exactly one of the 6 outcomes must still occur, and all of the outcomes are disjoint, the
probability distribution still obeys the following equality:

Pr(E1) + Pr(E2) + Pr(E3) + Pr(E4) + Pr(E5) + Pr(E6) = 1.

Now let us first calculate the probability of each of the 6 outcomes. Notice that if we let p = Pr(E6),
then Pr(E5) = 2p, and similarly, Pr(E4) = 2 · Pr(E5) = 4p. This line of reasoning yields

32p + 16p + 8p + 4p + 2p + p = 1,

and solving this equation yields p = 1/63. Now we can solve for the probability of each outcome.
In particular, Pr(E1) = 32/63, which is much larger than 1/6. Furthermore, the probability that Y
is even is now Pr(E2) + Pr(E4) + Pr(E6) = 16/63 + 4/63 + 1/63 = 21/63 = 1/3. Similarly, we can
see that the probability that Y is even or prime is (using the complement rule) 1− Pr(E1) = 31/63.

The Birthday Paradox: We now study a phenomenon known as the birthday paradox. This actually
isn’t a paradox in the strictest sense of the word, because the result we derive will be mathematically
rigorous. However, for somebody who has never seen the result, it may sound quite surprising.

The setup is the following: assume that there are n students in a class, and a year has d days. Of
course, we know that d = 365, but by using the variable d, our analysis can apply to a more general
setting (e.g., if we set d = 30, then this is solving the problem of only considering students born in
April). Assuming that each student is equally likely to have been born on any of the d days, what is
the probability that all n birthdays are distinct?

Let’s fix an ordering of the students, and count the number of outcomes. In this case, an outcome
is a sequence of length n, and each element is one of the d days. Thus, the total number of possible
outcomes is dn. Furthermore, since the birthdays are all independent from each other and identical,
every outcome is equally likely. Thus, each outcome occurs with probability 1/dn.

Now let D denote the outcome that the birthdays are distinct. For the birthdays to be distinct,
the first student can have any one of d birthdays, but then the second birthday only has (d− 1)
possibilities. This reasoning continues until the n-th student only has (d− (n− 1)) possibilities.
Thus, the total number of outcomes with no repeated birthdays is d(d− 1)(d− 2) · · · (d− (n− 1)).

Since each outcome is equally likely, the probability of our outcome having distinct birthdays is
the following:

Pr(D) =
d(d− 1)(d− 2) · · · (d− (n− 1))

dn =
d
d
· d− 1

d
· d− 2

d
· · · d− (n− 1)

d

=

(
1− 0

d

)(
1− 1

d

)(
1− 2

d

)
· · ·

(
1− n− 1

d

)
.

We now make use of the bound 1− x < e−x for any positive real number x. (This can be proved
by, say, considering the Taylor series for e−x.) Applying this inequality to each term above yields
the following:

Pr(D) < e−0/d · e−1/d · e−2/d · · · e−(n−1)/d

= e−(∑
n−1
i=1 i/d)

= e−n(n−1)/(2d).
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Notice that as n increases, this upper bound on Pr(D) decreases. Intuitively, this makes sense: as
the number of students increases, the probability that all birthdays are distinct decreases. In fact,
by the pigeonhole principle, if n ≥ d + 1 then Pr(D) = 0.

Equipped with this bound, we can determine the value of n that is large enough to ensure
Pr(D) < 1/2. It is straightforward to verify that if n ≥ 25, then e−n(n−1)/(2·365) < 0.44. This means
that in a class of only 25 students, it is more likely than not that two students share a birthday!

3.3 Conditional Probability

Finally, we formalize the notion of conditional probability.

Definition 3. Let A and B be two events of a sample space. Then the probability of the event “A given B”,
denoted A|B, is defined as the following:

Pr(A|B) = Pr(A ∩ B)
Pr(B)

.

Intuitively, we can appreciate the utility of conditional probabilities by considering the following
scenario: Suppose B is an extremely unlikely event, i.e., Pr(B) is very small, and A is a strict subset
of B, so Pr(A) is even smaller. Normally, we do not expect A to happen; however, if we were
told that B happened, we start to suspect A also happened. This is given by the probability of A
conditioned on the fact that B happened.

We can also extend the “dartboard” analogy to this situation. In this case, we know that the
dart hit the region corresponding to B, and we want to know if the dart also hit A. Then we only
need to concern ourselves with the region of A that is contained in B, and the new “sample space”
is only the region corresponding to B.

Independence: Intuitively, two events A and B are independent if knowing the outcome of B does
not affect the probability of A. Mathematically, A is independent of B if Pr(A|B) = Pr(A). Notice
that, from the definition of conditional probability, this equation is equivalent to Pr(A ∩ B) =
Pr(A) · Pr(B). From this perspective, it is clear that A is independent of B if and only if B is
independent of A.

4 Summary

In this lecture, we introduce the basics of probability theory giving the relevant definitions and
rules. We also applied a four-step reasoning process to multiple examples, including the birthday
paradox, and concluded with a brief look at conditional probability.
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