COMPSCI 230: Discrete Mathematics for Computer Science April 17,2019

Lecture 24
Lecturer: Debmalya Panigrahi Scribe: Erin Taylor

1 Overview

In this lecture, we continue our study of probability. We focus on conditional probabilities and
independence.

2 Conditional Probability

Recall our definition of conditional probability, when we want to know the probability of the event
A given B:
Pr(ANB)

Pr(B)

We are asking for the probability of event A after restricting our sample space to event B, see
the following diagram in Figure 1. Event A N B has a small probability, but once we restrict to
only event B instead of the entire sample space, it may be a larger fraction and therefore a higher
probability.

Pr(A|B) =

(. J

Figure 1: Sample space S, shaded blue area showing restricting space to event B.

Example 1: Let’s revisit the Monty Hall problem now that we know the concept of conditional
probability. Recall that there are 3 closed doors A, B, and C for the guest to pick and behind one
door is a car, while behind the other two are goats. After the guest picks a door, the host opens one
of the two remaining doors to reveal a goat. Then, the guest is given the option to switch the door
they picked. We saw that the guest is more likely to win by switching. Let’s define some events
formally.

X : guest wins car by switching
Y : car is at location A and there is a goat at B

Z : guest picks door A and host reveals a goat at B
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Event Y happens when the car is at location A, since both other locations will necessarily have
goats. Thus, Pr(Y) = 1/3. Event X and Y both happen when the guest does not originally pick
door A, but then switches to door A. Thus, the guest could pick door B or C. This could happen 2
ways with probability Pr(X NY) = 2/9. Now we can compute the probability of the guest winning
by switching given that the car is at A:

Pr(XNY) 2/9
Pr(Y) — 1/3
Let’s consider event Z. There are two ways for this event to occur. The location of the car is

A and the guest picks A, then the host reveals goat at B is one way with probability 1/18. The

location of the car is at A, the guest picks C, then host reveals goat at B occurs with probability 1/9.
Thus,

Pr(X|Y) = 1/3.

P(Xnz)  1/9
P(z) — 1/9+1/18

The calculation of Pr(X|Y) includes the outcome that the host opens door C, which included
some extraneous outcome in our calculation. In reality, we are interested in the probability of
winning by switching given the guest picks door A and the host opens door B. This aligns with
what we calculated last time— that the guest’s best strategy is to switch.

Let’s consider another example of conditional probability leading to a counter-intuitive result.
Example 2: Suppose we have a test that tells us whether a person is sick with a high degree of

Pr(X|Z) = =2/3.

accuracy. For a person who is healthy, the test will likely be negative and for a person who is sick,
the test will likely be positive. We define the following events.

A : testis positive A : testis negative

B: personis healthy B : person is sick

We have the following tree in Figure 2 showing the probability that someone is healthy and
the probability of each test result. A positive test result for a healthy person is known as a false
positive, and a negative test for a sick person is known as a false negative.
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Pr(BN A) = .099

P(BNA) = .891

P(BN A) = .0095

P(BNA) = .0005
Figure 2: Tree Diagram for Example 2.
Now, if we run the test and the test is positive, intuitively we expect that the person is sick. In

other words, we expect the number of false positives to be low. That is, we expect Pr(B|A) to be
low and Pr(B|A) to be high. Let’s see if this is the case.

Pr(ANB) .09

Pr(BlA) = —pray ~ 7085~ !
_ Pr(ANB)  .0095
Pr(Bl4) = Pr(4) 085

What happened? If we were to test a random person and the test is positive, it is more likely
that they are healthy than they are sick. This is the result of the fact that the vast majority of people
are healthy. Fortunately, medical tests are not usually run on random people, but on those showing
symptoms of being sick!

When considering two events, we may not always know the probability of their intersection.
We will introduce two rules that are useful for calculating conditional probabilities in such cases.

1. Bayes’ Rule: Suppose we have two events A and B. Bayes’ Rule relates the conditional
probabilities P(A|B) and P(B|A).
Pr(B|A)Pr(A)
P(B)
Note that Pr(ANB) = Pr(B|A)Pr(A) = Pr(A|B)Pr(B) by our definition of conditional
probability, so this rule is straightforward to derive from there.

Pr(A|B) =

2. Law of Total Probability:
Pr(A) = Pr(A|B) Pr(B) + Pr(A|B) Pr(B)

This law is also intuitive, the total probability of event A is the sum of the probability of AN B
and ANB.
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We can also combined the two rules:

B Pr(B|A)Pr(A)
Pr(A[B) = Pr(B|A) Pr(A) + Pr(B|A) Pr(A)

Example 3: Suppose we want to know the probability of Duke winning the NCAA tournament.
We define the following events.

A : Duke wins the NCAA tournament
B : Duke beats UNC in the ACC tournament

Suppose we are given that Pr(B) = .75, Pr(A|B) = .99, and Pr(A|B) = .25. Now, if we know
that Duke won the NCAA tournament, what is the probability they beat UNC? We can use the
above formula:

Pr(A|B) Pr(B) (.99)(.75)

Pr(BlA) = G (AIB) Pr(B) + Pr(A[B) Pr(B) _ (99)(75) + (25)(25) ~ O*%2

2.1 Simpson’s Paradox

Suppose we have two schools within a university: School A and School B. The school admits 100
students per year, and last year they admitted 51 men and 49 women. Is this school admissions
process biased against women? Let’s consider the admissions breakdown by school.

H School ‘ Men ‘ Women H
A 1/10 40/90
B 50/90 9/10

Overall | 51/100 | 49/100

It seems that each individual school is biased against men, but overall the university is biased
against women. How could this be possible? This is a result of the fact that one school is more
selective than the other. More women applied to the more selective school, so overall fewer women
gain admission to the university. In the language of probabilities, the conditional probability of
acceptance of men in both schools is smaller than that of women, but the unconditional probability
of acceptance of men is higher than that of women.

3 Independence

Recall that two events A and B are independent if knowing the outcome of B does not affect the
probability of A, and vice versa. Formally, A and B are independent of B if Pr(A|B) = Pr(A).
Equivalently, Pr(ANB) = Pr(A)Pr(B). We will consider the case when we have more than 2
events.

Definition 1. Suppose we have events Ay, ..., A, and k is a positive integer such that k < n. These events
are said to be k-wise independent if, for any subset with size < k, the subsets are independent.

Pr( Ay N A, M-+ N Ay ) = Pr(Ay) Pr(Ay)...Pr(A; ) foranyj <k,
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Definition 2. Suppose we have events Ay, ..., A,. These events are said to be mutually independent if
they are n-wise independence.

Intuitively, a set of events is mutually independent if the probability of each event is the same
no matter which of the other events has occurred.

Example 4: Suppose we have three fair coins, and we toss all of them such that each toss is
independent. We will define the following events:

Aq : Coins 1 and 2 have the same result
A, : Coins 2 and 3 have the same result

Az : Coins 1 and 3 have the same result
We will show that these events are 2-wise independent, often called pairwise independent.
Pr(A;) = Pr(Ay) = Pr(As) = 1/2. Then,
PI'(A1 N Az) =1/4

However, consider the event A; N A N A3z. There are two ways for this to happen: all heads or
all tails. So this occurs with probability 1/4. However, Pr(A;) Pr(A;) Pr(As) = 1/8. Thus, these
events are not 3-wise independent. Note that Pr(As|A;1 N Az) = 1.

4 Summary

In this lecture, we revisited the Monty Hall problem using the perspective of conditional probability.
We also introduced Bayes’ rule and the Law of total probability. We defined independence of
events, and gave some examples where our intuition does not match up with the calculations of
probabilities.
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