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1 Overview

In the last lecture, we began studying random variables and various aspects associated with
them, such as independence, expectation, and variance. In this lecture, we will continue studying
properties about variance, and we will also see some useful inequalities concerning random
variables.

2 Variance of Random Variables

Recall that a random variable is a total function whose domain is a sample space S. The codomain of
a random variable is often R or {0, 1}, but in general, it can be any set.

Let X : S → R be a random variable. Recall that the expectation of X represents the “average
value” of X, and can be written in the following two ways:

E[X] = ∑
ω∈S

X(ω) · Pr[ω] = ∑
x∈R

x · Pr[X = x]. (1)

Another important quantity associated with X is its variance, given as follows:

Var[X] = E[(X− E[X])2] = E[X]2 − E2[X]. (2)

(Note that E2[X] denotes the quantity (E[X])2.) Intuitively, the variance of X measures how “spread
out” the values of X are: if Var[X] = 0, then X is a constant, and if Var[X] is high, then X often
takes value far from its expectation. Finally, the standard deviation of X is the positive square root of
its variance.

Geometric random variable: Recall the following random process: we have a coin that results in H
with probability p, and we repeatedly flip this coin until we obtain a head H. Thus, each outcome
in the sample space is a sequence of (possibly 0) tails, followed by a single head. We can define a
random variable X on this sample space as follows:

∀s ∈ S. X(s) is equal to the length of s.

Notice that Pr[X = x] = (1− p)x−1 p for every x ∈ Z+. Such a random variable X is often known
as a geometric random variable with parameter p. (Intuitively, the value of p can be interpreted as
the probability of “success,” i.e., the probability that the experiment ends at each flip.)

Recall that the expectation of this random variable is 1/p. Now we will calculate its variance:

Var[X] = E[X2]− E2[X] = E[X2]− 1
p2 . (3)
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Let S = E[X2], and notice from the right-hand side of (2), we can write S as follows:

S = 12 p + 22(1− p)p + 32(1− p)2 p + 42(1− p)3 p + · · ·
(1− p) · S = 12(1− p)p + 22(1− p)2 p + 32(1− p)3 p + · · ·

Subtracting the second equation from the first equation yields

pS = p + 3(1− p)p + 5(1− p)2 p + 7(1− p)3 p + · · · ,

which implies
S = 1 + 3(1− p) + 5(1− p)2 + 7(1− p)3 + · · · .

and
(1− p)S = (1− p) + 3(1− p)2 + 5(1− p)3 + · · · .

Again, we subtract (1− p)S from S to obtain the following:

pS = 1 + 2(1− p) + 2(1− p)2 + 2(1− p)3 + · · ·

= 1 + 2(1− p)
[

1 + (1− p) + (1− p)2 + · · ·
]

= 1 + 2(1− p) · 1
1− (1− p)

=
2− p

p
.

Since we initially let S = E[X2], substituting this into (3) yields

Var[X] =
2− p

p2 − 1
p2 =

1− p
p2 .

We will now prove a theorem that can often be applied to calculate the variance of random
variables more generally. Recall that if two random variables X and Y are independent, then
E[XY] = E[X] · E[Y].

Theorem 1. If X and Y are independent random variables, then

Var[X + Y] = Var[X] + Var[Y].

Remark: This statement of this theorem is similar to that of linearity of expectation E[X + Y] =
E[X] + E[Y]. However, for variance, independence of X and Y is required, whereas linearity of
expectation holds regardless of whether the random variables in consideration are independent.

Proof. By the equation given in (2), we have

Var[X + Y] = E[(X + Y)2]− E2[X + Y].

Consider the first term of the expression above:

E[(X + Y)2] = E[X2 + 2XY + Y2] = E[X2] + 2 · E[XY] + E[Y2], (4)
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and now the second:

E2[X + Y] = (E[X + Y])2 = E2[X] + 2 · E[X] · E[Y] + E2[Y]. (5)

Since X and Y are independent, we know that 2 · E[XY] = 2 · E[X] · E[Y]. Thus, subtracting (5) from
(4) yields

Var[X + Y] = E[X2]− E2[X] + E[Y2]− E2[Y]
= Var[X] + Var[Y],

where the second equality again holds from (2).

Binomial random variable: Now consider the following process: we flip a coin n times, and each
result is H with probability p and independent of the other results. We define a random variable X
that maps each outcome to the number of H’s it contains. Such a random variable is known as a
binomial random variable with parameters n and p. We’ve already seen that this random variable
has expectation np; we now consider its variance.

Corollary 2. The variance of a binomial random variable X with parameters n and p is np(1− p).

Proof. We shall write X as the sum of n Bernoulli random variables: for every i ∈ {1, 2, . . . n}, we
define a random variable Xi as 1 if the i-th flip returned H, and 0 otherwise. Now notice that

X = X1 + X2 + · · ·Xn.

In other words, the total number of heads can be calculated by summing independent and identical
Bneroulli random variables over the n flips. We’ve seen that the variance of each Xi is p(1− p).

Furthermore, since the outcome of the coin flips are independent of one another, we can apply
Theorem 1 (repeatedly):

Var[X] = Var[X1] + Var[X2] + · · ·+ Var[Xn] = np(1− p).

3 Deviation from Expectation

We will conclude our study of random variables by looking at some useful and well-known bounds.
These bounds apply to a broad class of random variables and are generally used to understand the
probability that a random variable deviates from its expectation.

Theorem 3 (Markov’s Bound). Let X be a non-negative random variable, and let k be a positive real
number. Then

Pr[X > k] <
E[X]

k
.

Proof. Let p denote the probability that X is at least k, i.e., p = Pr(X > k). Recall from (1) that we
can write the expectation of X as follows:

E[X] = ∑
x∈R

x · Pr[X = x]

= ∑
x>k

x · Pr[X = x] + ∑
x≤k

x · Pr[X = x]

> k ∑
x>k

Pr[X = x] + ∑
x<k

0 · Pr[X = x]

= k · Pr[X > k],
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Dividing the expressions above by k yields the desired result.

We now apply Theorem 3 on a particular non-negative random variable to obtain another
well-known bound that is often more useful.

Theorem 4 (Chebyshev’s Bound). Let X be a random variable, and let σX denote the standard deviation
of X. Then for any c ∈ R+, the following inequality holds:

Pr
[
|X− E[X]| > c · σx

]
<

1
c2 .

Proof. Consider the random variable (X − E[X])2. Notice that the expectation of this random
variable is precisely σ2

X, i.e., the variance of X. Furthermore, notice that this real variable is always
non-negative. Thus, for any k ∈ R+, the following holds:

Pr
[
(X− E[X])2 > k

]
<

E
[
(X− E[X])2]

k
=

Var[X]

k
.

In particular, we can set k = c2 ·Var[X] to obtain

Pr
[
(X− E[X])2 > c2 ·Var[X]

]
<

1
c2 .

Since we know that c is positive, the event considered above is precisely the event considered in
the statement of the theorem. Thus, the inequality holds.

Example 1: Now let us apply these bounds in the following scenario: we toss a fair coin n times,
and let X denote the number of resulting H’s (i.e., X is a binomial random variable with parameters
n and p = 1/2). Then E[X] = np = n/2, that is, we expect to see n/2 heads. But in reality,
the number of heads almost certainly will not be exactly n/2, so we ask ourselves: what is the
probability that X exceeds its expectation by over

√
n? In other words, we seek the value of

Pr
[

X >
n
2
+
√

n
]

.

Observe that Theorem 3 tells us

Pr
[

X >
n
2
+
√

n
]
<

n/2
n/2 +

√
n

,

but this bound is not very illustrative. If n is large, then this number is only slightly smaller than
1, which is a trivial upper bound on the value we seek. (For example, if n = 1024, then the above
bound tells us the probability is at most 0.94, which is close to 1.)

In contrast, Theorem 4 gives a much tighter bound. The variance of X is np(1− p) = n/4 (see
Corollary 2) so its standard deviation is σx =

√
n/2. This implies the following:

Pr
[

X >
n
2
+
√

n
]
< Pr

[∣∣∣X− n
2

∣∣∣ > √n
]
<

1
4

.

The first inequality holds because the event on the left-hand side is a strict subset of the event on
the right-hand side, and the second inequality follows from Theorem 4 by setting c = 2 so that
c · σX =

√
n.
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4 Summary

In this lecture, we concluded our study of random variables. We computed the variance of well-
known random variables, proved a general property about the variance of the sum of independent
random variables, and derived some well-known inequalities that bound the probability a random
variable deviates from its mean.
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