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Lecture 7
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1 Overview

In this lecture, we introduce sequences and Cartesian products. We also define relations and study
their properties.

2 Sequences and Cartesian Products

Recall that two fundamental properties of sets are the following:

1. A set does not contain multiple copies of the same element.

2. The order of elements in a set does not matter.

For example, if S = {1, 4, 3} then S is also equal to {4, 1, 3} and {1, 1, 3, 4, 3}. If we remove these
two properties from a set, the result is known as a sequence.

Definition 1. A sequence is an ordered collection of elements where an element may repeat multiple times.

An example of a sequence with three elements is (1, 4, 3). This sequence, unlike the statement
above for sets, is not equal to (4, 1, 3), nor is it equal to (1, 1, 3, 4, 3). Often the following shorthand
notation is used to define a sequence:

si =
1
2i ∀i ∈N

Here the sequence (s1, s2, . . . ) is formed by plugging i = 1, 2, . . . into the expression to find s1,
s2, and so on. This sequence is (1/2, 1/4, 1/8, . . . ). We now define a new set operator; the result of
this operator is a set whose elements are two-element sequences.

Definition 2. The Cartesian product of sets A and B, denoted by A× B, is a set defined as follows:

A× B = {(a, b) : a ∈ A, b ∈ B}.

Notice that each element of A× B is a sequence containing two elements—the first from A, and
the second from B. For example,

A = {1, 5, 3}, B = {0, 2}.

Then
A× B = {(1, 0), (1, 2), (5, 0), (5, 2), (3, 0), (3, 2)}.
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Remember than in any set, we can freely alter the order of elements, but in a sequence, we cannot
alter the order of elements. Thus, we can also write A× B as

A× B = {(5, 0), (1, 2), (3, 2), (5, 2), (3, 0), (1, 0)},

but since (0, 1) is not an element of A× B, we have

A× B 6= {(0, 1), (1, 2), (5, 0), (5, 2), (3, 0), (3, 2)}.

Observe that R2 is shorthand for R×R, and it represents the Cartesian plane that we often use to
plot functions such as y = 3x2 + 1.

Suppose A and B are finite sets. Recall that the cardinality of set A, denoted |A|, is the number
of elements in A; similarly, |B| is the cardinality of set B. What is the cardinality of their Cartesian
product, i.e., |A× B|? There are |A| choices for the first term of each pair and |B| choices for the
second term of each pair. Thus, for finite sets A, B:

|A× B| = |A| · |B|.

We can also take the Cartesian product of a set and itself. A common notation used for
expressing this is as follows:

An = A× A× .....× A︸ ︷︷ ︸
n times

.

3 Relations

Definition 3. A binary relation between two sets A and B is a set R of ordered pairs (a, b) consisting of
elements a ∈ A and b ∈ B. In other words, R ⊆ A× B. If (a, b) ∈ R, we often write it as aRb.

Example 1: Define relation R as a positive integer and twice its value. Thus, R ⊆ Z+ ×Z+. We
can explicitly write down elements of R:

R = {(1, 2), (2, 4), (3, 6), . . . }

In set builder notation:
R = {(a, 2a) : a ∈ Z+}

Note that for every relation, we may not be able to describe it with a similar succinct formulation.
Any subset of the Cartesian product is a valid binary relation.

Example 2: Suppose A = {1, 2, 3, 4}, B = {a, b, c, d, e, f }, and relation R = {(1, a), (2, c), (3, f ), (3, c)}.
We can draw this relation as a map from A to B, given in Figure 1.

The out-degree of an element a ∈ A is the number of pairs of R in which a appears (the number
of arrows leaving a in the map). Similarly, the in-degree of an element b ∈ B is the number of pairs
of R in which b appears (the number of incoming arrows to b in the map). In Example 2, the out
degree of 3 ∈ A is 2 and the in degree of e ∈ B is zero. Table 1 gives a characterization of a relation
based on the in-degrees and/or out-degrees in its map.

For a relation to be a function, notice that for each a ∈ A, a cannot appear in more than one
pair of the relation. In a total relation, any a ∈ A must appear in at least one pair. If both of these
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Figure 1: Figure representing relation in Example 2.

property of relation type of relation
out-degree of all elements ≤ 1: function
out-degree of all elements ≥ 1: Total Relation

in-degree of all elements ≤ 1: “INTO” (injective)
in-degree of all elements ≥ 1: “ONTO” (surjective)

Table 1: Classes of relations

properties are satisfied the relation is a total function. Usually, we will assume functions are always
total functions. When this is not the case, we will specify that the function is partial. If a relation is
both injective and surjective, the relation is a bijective relation. If all 4 properties are satisfied, the
relation is a bijective function.

Observation 1. For finite sets A and B such that there exists a bijective function between A and B, it must
be that |A| = |B|.

This observation is intuitive for finite sets, but what about infinite sets?

Example 3: Let A = Z+ = {1, 2, 3, . . . } and B = {2, 4, 6, . . . } be the set of even positive integers. It
is clear that B is a strict subset of A, i.e., B ⊂ A. Define the following relation:

R = {(a, 2a) : a ∈ A}.

For each a ∈ Z+ it appears exactly once in relation R, so this is a total function. Additionally,
each b appears once in R so this is a bijective function between A and B. This should give you
pause; how did we come up with a bijection between two sets where one is a strict subset of the
other? Crucially, these are infinite sets. We will see later in the course that comparing the sizes of
infinite sets must be treated with care.

For any relation R ⊆ A× B we refer to A as the domain and B as the codomain. We also define:

Range(R) = {b ∈ B : ∃(a, b) ∈ R}.

7-3



The range of a relation is the subset of the codomain that participates in the relation. Similarly
we define:

Support(R) = {a ∈ A : ∃(a, b) ∈ R}.

The support is the subset of the domain participating in relation R. Let’s consider a few
examples.

Example 4: Let us define a relation R ⊆ R2 = R×R as the following:

aRb if a ∈ Z+ and b = −a.

In other words, R = {(1,−1)(2,−2), . . . }. Let’s consider some properties of this relation:

domain: R

codomain: R

support: Z+

range: Z−

Total: No
Function: Yes
Injective: Yes
Surjective: No

While we define the relation in terms of the real numbers, only the positive integers appear
from A. Thus, the support of R is the set of positive integers. Only the negative integers from
B = R appear in the relation, this set is the range. Notice that the domain and support are not the
same set, so there must be some elements of the domain not participating in the relation. Thus, this
is not a total relation. An element either participates once in the relation, or not at all. This implies
the relation is a function and that it is injective. The relation is not surjective. We can see this by
observing that the range and codomain are different sets.

Example 5: Let’s take a look at another relation. We define relation R such that R ⊆ Q+ ×R and

R =
{( a

b
, a + b

)
:

a
b
∈ Q+ and gcd(a, b) = 1

}
.

domain: Q+

codomain: R

support: Q+

range: Z+ \ {1}

Total: Yes
Function: Yes
Injective: No
Surjective: No

Consider the range of R. Clearly the range is a subset of the positive integers, but notice that for
any positive integer k > 1, ( k−1

1 , k) ∈ R. Does the range include 1? The rational number 0
1 would

produce 0 + 1 = 1, but this is not a positive rational. So, our range is all positive integers except 1.
Because the gcd(a, b) = 1, each rational number has out-degree exactly 1, so R is a total function.
However, R is not surjective since the codomain and range are different sets. Additionally, R is
not injective because the in-degree of b in the range could greater than 1. Consider the positive
rationals 1

4 and 2
3 . Both of these map to the integer 5, so the in-degree of 5 is greater than 1.
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3.1 Composing Relations

Consider the following theorem.

Theorem 2. For sets A, B, C if R1 is a surjective relation from A to B and R2 is a surjective relation from B
to C, then there exists a surjective relation from A to C.

Before we prove this, consider the map in Fig. 2. Intuitively, we can construct a surjective
relation between A and C by following the paths from elements of A passing through elements
of B to elements of C. In Fig. 2, the arrows from A to B represent R1 and the arrows from B to C
represent R2. To find a surjective relation from A to C, we follow the two paths in red and say that
the element of A at the beginning of the path is related to the element of C at the end of the path.

A
B

C

Figure 2: Composing relations.

Proof of Theorem 2. Given R1 ⊆ A× B is surjective and R2 ⊆ B× C is surjective, we will construct
a new relation R3 such that R3 ⊆ A× C and

R3 = {(a, c) : ∃b ∈ B s.t. aR1b and bR2c}.

Thus, the pair (a, c) is in our relation if there exists b ∈ B such that (a, b) ∈ R1 and (b, c) ∈ R2.
We must prove R3 is surjective. Let c ∈ C be an arbitrary element. Since R2 is surjective, there
exists b ∈ B such that (b, c) ∈ R2. Since R1 is surjective, there exists a ∈ A such that (a, b) ∈ R1. By
our definition of R3, (a, c) ∈ R3. Because we started with an arbitrary element in C and showed it
appears in at least one pair of R3, we can conclude that R3 is surjective.

The definition of R3 in Theorem 2 is a composition of relations.

Definition 4. For sets A, B, C if R1 ⊆ A× B and R2 ⊆ B× C then the composition R2 ◦ R1 is defined
as follows:

R2 ◦ R1 = {(a, c) : ∃b ∈ B s.t. (a, b) ∈ R1 and (b, c) ∈ R2}.

Thus, R2 ◦ R1 is a relation defined from A to C (R2 ◦ R1 ⊆ A× C). In Theorem 2 we showed
that taking a composition of two surjective relations results in another surjective relation. We will
prove a similar theorem about injective relations, functions, and total relations.
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Theorem 3. For sets A, B, C if R1 ⊆ A× B is an injective relation and R2 ⊆ B×C is an injective relation,
then R2 ◦ R1 is an injective relation.

Proof. Consider an arbitrary c ∈ C. Since R2 is an injective relation, either c does not participate
in R2, or c participates in the relation exactly once. If (b, c) 6∈ R2 for any b, then c will not appear
in relation R2 ◦ R1 by definition. Otherwise, there exists a b such that (b, c) ∈ R2. This is the only
element of B which maps to c. We now consider this b.

Since R1 is an injective relation, either b does not participate in R1, or b participates in the
relation exactly once. If (a, b) 6∈ R1 for any a, then c will not appear in relation R2 ◦ R1 by definition.
In this case, since nothing in A maps to b, there is no path from an element of A to c.

Otherwise, there exists an a ∈ A such that (a, b) ∈ R1. This is the only element of A which maps
to b. Thus, the pair (a, c) ∈ R2 ◦ R1. In all cases, an element c ∈ C appears in the relation exactly
once or not at all. This implies that R2 ◦ R1 is injective.

Theorem 4. For sets A, B, C if R1 ⊆ A× B is a function and R2 ⊆ B× C is a function, then R2 ◦ R1 is a
function.

Proof. Consider an arbitrary a ∈ A. Because R1 is a function, a appears in a pair (a, b) ∈ R1 at most
one time. If a does not participate in R1, then a will not map to any c ∈ C in R2 ◦ R1. Otherwise, a
appears exactly once in a pair (a, b) ∈ R1 for some b ∈ B. Consider this b.

Because R2 is a function, b will appear in at most one pair (b, c). If b does not participate in
R2, then a will not map to any c ∈ C in R2 ◦ R1 since there is no path from a to c through this b.
Otherwise, b appears exactly once in a pair (b, c) ∈ R2 for some c ∈ C. In this case, (a, c) ∈ R2 ◦ R1.
This is the only time when a appears in R2 ◦ R1. Thus, R2 ◦ R1 is a function.

Theorem 5. For sets A, B, C if R1 ⊆ A× B is a total relation and R2 ⊆ B× C is a total relation, then
R2 ◦ R1 is a total relation.

Proof. Consider an arbitrary a ∈ A. Because R1 is a total relation, a appears in at least one pair
(a, b) ∈ R1. It may appear in more than one pair of R1, but we will consider one such b. Since R2
is a total relation, b appears in at least one pair (b, c) ∈ R2. Thus, (a, c) ∈ R2 ◦ R1 by definition.
Therefore, any a ∈ A appears in at least one pair (a, c) ∈ R2 ◦ R1 for some c ∈ C. This implies
R2 ◦ R1 is a total relation, as desired.

4 Summary

In this lecture, we reviewed the difference between sets and sequences. We also defined Cartesian
products and binary relations. We defined properties of important classes of relations, and proved
theorems using these properties.
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