COMPSCI 230: Discrete Mathematics for Computer Science February 11, 2019

Lecture 9

Lecturer: Debmalya Panigrahi Scribe: Kevin Sun

1 Overview

In this lecture, we study a special class of relations on a set known as equivalence relations. We
give examples and then prove a connection between equivalence relations and partitions of a set.

2 Equivalence Relations

Definition 1. An equivalence relation is a relation that is reflexive, symmetric, and transitive.

We shall now give some examples of equivalence relations. Recall that if R is a relation, then

i

the statements “xRy”, “(x,y) € R”, and “x relates to y” (but not “y relates to x”) are all equivalent.

Example 1: Consider the relation R = {(x,y) : x = y} on the set Z". To show that R is an
equivalence relation, we must show that R is reflexive, symmetric, and transitive:

e Forall x € Z7, the equality x = x is true, so xRx. This proves R is reflexive.
e If xRy, then x = y, which means y = x, so yRx. This proves R is symmetric.
e If xRy and yRz, then x = y and y = z, which means x = z, so xRz. This proves R is transitive.

Similarly, we can show that if S is any set, then the relation { (A, B) : A = B} on the set 2° is also an
equivalence relation.

Example 2: Consider the sets A = {1,2,a,b} and B = {a,b} (so B C A). Recall that if S is a set,
then the power set of S is denoted by 2°, and its elements are all possible subsets of S. Now consider
the relation R on 24 (i.e., R is a subset of 24 x 24), defined as follows:

(X,Y) € Rifand only if XN B =Y N B.

In other words, X relates to Y if they contain the same subset of letters. For instance, under this
relation, @ relates to exactly four elements of 24: @, {1}, {2}, and {1,2}.

We now show that R is an equivalence relation, which requires showing that R is reflexive,
symmetric, and transitive. This proof (and many proofs of equivalence relations) is very similar to
the proof in Example 1.

e Forall X € 2%, we have XN B = X N B, so R is reflexive.

e If (X,Y) € R then XN B = Y N B, which means Y N B = X N B. This implies (Y, X) € R, so
R is symmetric.

e If (X,Y) € Rand (Y,Z) € R, then XNB = YNBand YN B = ZN B. Together, these
equalities imply X N B = Z N B, which means (X, Z) € R, so R is transitive.
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Example 3: Now let’s slightly modify the definition of the relation from Example 2. Now, X relates
to Y if and only if X and Y contain the same number of letters, that is, [ XN B| = |Y N B|. Itis
straightforward to verify that this new relation is also an equivalence relation.

But note that this modified equivalence relation is indeed different from the one in Example 2.
Consider X = {1,a} and Y = {2,b}: here, X and Y share the same number of letters (one), but not
the same set of letters ({a} and {b}, respectively). Therefore, X does not relate to Y according to the
relation defined in Example 2, but X relates to Y in the current example. In general, a set can have
many different equivalence relations.

3 Partitions

One of the reasons that equivalence relations are interesting is because of their connection to
partitions. To motivate this connection, let’s consider the set A = {1,2,3} and define a relation R
on 2% as follows: (X,Y) € R if and only if | X| = |Y|. We shall explicitly draw this relation below:
for every element of 24 and if X relates to Y, we’ll draw an arrow from X to Y.

o

Figure 1: The equivalence relation R = {(X,Y) : |X| = |Y|} on A = {1, 2,3}, where an arrow from
S1 to Sp indicates (S1,5,) € R.

=

In Fig. 1, each circle represents an element of 24 (i.e., a subset of A). Notice that based on the
arrows, the elements of 24 are grouped into four distinct clusters. Within each cluster, all of the
elements relate to each other (including themselves, because R is reflexive), and if two elements are
in different clusters, then neither relates to the other.

The structure of these clusters is no coincidence: if S is a set and R is an equivalence relation on
S, then R induces a clustering of this form, and this kind of clustering is known as a partition.

Definition 2. Let P be a set containing subsets of S, so P is a subset of 2°. Then P is a partition of S if P
satisfies the following properties:

1. The union of the elements of P is equal to S.
2. If Sy and S are elements of P and S1 N Sy # @, then S1 = S».
If P is a partition, then each element of P is called a block of P, so each block of P is a subset of S.
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Informally, the first property ensures that every element of A is covered by a block, and the
second property ensures that no two blocks overlap. An alternative definition is the following: if P
is a collection of subsets of A, then P is a partition of A if every element of A is in exactly one subset
in P. At the end of the lecture, we will formally state and prove the claim that every equivalence
relation induces a partition, but for now, we continue exploring this idea via examples.

In Fig. 1, R induces the following partition on 24.

@ {2 e} {00 A,

This example may be somewhat confusing, because the elements of the set we partition (24)
are actually subsets of some other set (A). Nonetheless, 24 has 8 elements, and this partition
assigns each element to blocks of size 1, 3, 3, and 1. We now give more examples that are more
straightforward.

Example 1: Let R = {(a,b) : a = b} be a relation on Z¥; it’s easy to verify that R is an equivalence
relation. Now let P be the partition induced by R. Then for all n € Z™, the only element to which n
relates is n itself. Thus, every block of the partition contains exactly one positive integer, and there
are infinitely many blocks.

Example 2: Let R, = {(4,b) : a = b (mod 2)} be a relation on Z. (We say that a = b (mod k) if
a — b is divisible by k.) Again, it’s easy to verify that R is an equivalence relation. Notice that if
(x,y) € R, then x — y is even, which means x and y are either both even or both odd. Thus, the
partition induced by R has two blocks: the set of even integers, and the set of odd integers.
Similarly, if R1¢ = {(a,b) : a = b (mod 16)} is a relation on Z, then Ry, is also an equivalence
relation, so Ry induces a partition. The elements of each block all have the same remainder after
dividing by 16, and there are 16 possible remainders (0, 1, .. ., 15), so this partition has 16 blocks.

To begin formalizing the connection between equivalence relations and partitions, we now state
a useful definition regarding equivalence relations.

Definition 3. Suppose R is an equivalence relation on a set S, and x is any element of S. The equivalence
class of x, denoted by [x], is the set {y € S : xRy}.

Example 1: In Fig. 1, recall that 24 is being partitioned, and 2 has 8 elements. The corresponding
equivalence classes are the following;:

2] = (0}
(1] = [{2)] = (3] = {{1},{2}, {3}}
{1,2}] = [{1,3}] = [{2,3}] = {{1,2},{1,3}, {2,3}}
A] = {4},

Notice that the equivalence classes form a partition—this is the connection between equivalence
relations and partitions that we will prove below.
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Example 2: Recall the relation Ry = {(a,b) : a = b (mod 16)} on Z. Some of the equivalences
classes are given below:

...,—32,-16,0,16,32,...},
..,—31,-15,1,17,33, ...},

[15] = {...,—33,-17,—1,15,31...}.

We are now ready to state and prove a theorem that formally describes the fundamental
relationship between equivalence relations and partitions. Note that throughout this lecture, we
have already seen that an equivalence relation induces a partition, but now we shall formally prove
this phenomenon.

Theorem 1. If R is an equivalence relation on a set S, then the equivalence classes of R partition S.

Proof. Let P denote the subsets described in the theorem, so P = {[x] : x € S}. Recall that P is a
partition if the following properties hold:

1. The union of the elements of P is equal to S.
2. If S; and S; are elements of P and S1 N S; # @, then §1 = 5.

Let’s begin with the first property: let s be any element of S. Since R is reflexive, we have sRs,
which means s € [s]. Since [s] is an element of P, s is covered by an element of P, so P satisfies the
first property.

To prove the second property, we start by letting S; and S, be elements of P such that S; N Sy #
@. By the definition of P, there exist 4, b such that S; = [a] and S, = [b]. Since 51 N Sy # @, there
exists z such that z € [a] N [b]. Thus, aRz and bRz. Since R is symmetric, this means zRa and zRb.
Furthermore, since R is transitive, this means aRb and bRa.

We will now prove that [a] = [b], and as usual, we begin by showing [a] C [b]: let x be any
element of [a]. Then aRx, and combined with bRa and transitivity of R, we have bRx. Thus, x € [b],
so [a] C [b].

Similarly, let y be any element of [b]. Then bRy, and combined with aRb and transitivity of R,
this means aRy. Thus, y € [a], so [b] C [a]. Since [a] C [b] and [b] C [a], we must have [a] = [b], as
desired. O

4 Summary
In this lecture, we learned about a special class of relations known as equivalence relations. We saw

multiple examples, and ended by proving that the equivalence classes of an equivalence relation
form a partition of the set that the relation is defined on.
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