Relational
Model and Algebra

Introduction to Databases
CompSci 316 Spring 2019

DUKE

COMPUTER SCIENCE

|

Announcements (Tue. Jan. 15)

* You should be on Piazza!
* Otherwise, let me know after class

* HW1 to be posted today, due in about 2.5
weeks

* Problems will be posted one by one after the
material is covered in class (and announced on
piazza)

* Keep working on them

* Sign up for gradiance and gradescope
* Tokens posted on Piazza

Announcements (Tue. Jan. 15)

* Setup VM

* Instructions on course website
* Google cloud coupon will be sent soon
* There will be Help session next week

* TA/UTA office hours to be posted soon

Edgar F. Codd (1923-2003)

* Pilot in the Royal Air Force in WW2

* Inventor of the relational model
and algebra while at IBM

% * Turing Award, 1981

http://en.wikipedia.org/wiki/File:Edgar F Codd.jpg

Relational data model

* A database is a collection of (or)
 Each relation has a set of (or)
* Each attribute has a name and a (or)

e Set-valued attributes are not allowed

* Each relation contains a set of (or)
* Each tuple has a value for each attribute of the relation

* Duplicate tuples are not allowed
* Two tuples are duplicates if they agree on all attributes

® Simplicity is a virtue!

Example

Group

oeer gid lname
uid | name | age | pop [IRVSRMERO
142 Bart 10 0.9

gov Student Government

123 Milhouse 1002 dps Dead Putting Society
857 Lisa 8 0.7
456 Ralph 8 0.3

Member PRI
142 dps

I 123 gov
Ordering of rows doesn’t matter

(even though output is 857 abc

always in some order) 857 gov

456 abc

456 gov

Schema vs. instance

()

Specifies the logical structure of data
Is defined at setup time
Rarely changes

Represents the data content
Changes rapidly, but always conforms to the schema

® Compare to vs. collections of
in a programming language

Example

* Schema
* User (uid int, name string, age int, pop float)
* Group (gid string, name string)
* Member (uid int, gid string)
* Instance
 User: {(142, Bart, 10, 0.9), (857, Milhouse, 10, 0.2), ... }

* Group: {(abc, Book Club), {gov, Student Government), }
* Member: {{142, dps), (123, gov), ... }

Relational algebra

A language for querying relational data
based on “operators”

N N I . B .
EEEEEEE
N N I .
operators:

* Selection, projection, cross product, union, difference,
and renaming

* Additional, operators:
* Join, natural join, intersection, etc.

* Compose operators to make complex queries

Selection

* Input: a table R

* Notation:
* piscalleda (or)

* Purpose: filter rows according to some criteria

* Output: same columns as R, but only rows or R that
satisfy p

Selection example

* Users with popularity higher than 0.5

142
123
857
456

Bart
Milhouse
Lisa

Ralph

10
10

0.9
0.2
0.7
0.3

0b0p>05

142 Bart 10 0.9
_--

857 Lisa

No actual deletion!

More on selection

* Selection condition can include any column of R,
constants, comparison (=, <, etc.) and Boolean
connectives (A: and, V: or, —: not)

* Example: users with popularity at least 0.9 and age
under 10 or above 12
o User

* You must be able to evaluate the condition over
of the input table!
* Example: the most popular user

Projection

* Input: a table R

e Notation: 7, R
e Lis alist of columnsinR

* Purpose: output chosen columns
* Output: same rows, but only the columnsin L

Projection example

* |IDs and names of all users
T[uid,name User

142
123
857
456

Bart
Milhouse
Lisa

Ralph

age | pop
10 0.9

10
8
8

0.2
0.7
0.3

142
123
857
456

Bart
Milhouse
Lisa

Ralph

14

More on projection

* Duplicate output rows are removed (by definition)
* Example: user ages

Tage User
uid_| name | age | pop _ age
142 Bart 10 0.9 10

123 Milhouse 10 02 N
857 Lisa 8 0.7 8

456 Ralph g8 03 e

Cross product

* Input: two tables R and S
* Natation: R xS
* Purpose: pairs rows from two tables

* Output: for eachrow rin R and each s in S, output
a row rs (concatenation of r and s)

Cross product example

UserXMember

123
857

Milhouse

Lisa

10
8

0.7

123
123
123
857
857
857

Milhouse
Milhouse
Milhouse
Lisa
Lisa

Lisa

10
10
10
8
8
8

0.2
0.2
0.7
0.7
0.7

123
857
857
123
857
857

123
857
857

abc
gov
gov
abc

gov

gov
abc

gov

17

18

A note a column ordering

* Ordering of columns is unimportant as far as

contents are concerned

123
123
123
857
857
857

* So cross product is

Milhouse 10

Milhouse 10 0.2
Milhouse 10 0.2
Lisa 8 0.7
Lisa 8 0.7
Lisa 8 0.7

123
857
857
123
857
857

abc
gov
gov
abc

gov

123
857
857
123
857
857

abc
gov
gov
abc

gov

123 Milhouse 10

123 Milhouse 10 0.2
123 Milhouse 10 0.2
857 Lisa 8 0.7
857 Lisa 8 0.7
857 Lisa 8 0.7

, i.e., forany R and
S, RXS = SXR (up to the ordering of columns)

Derived operator: join

(A.k.a. “theta-join”’)
* Input: two tables R and S

* Notation: R S
* piscalleda (or)

* Purpose: relate rows from two tables
according to some criteria

* Output: for eachrow r in R and each row s in
S, output arow rs if r and s satisfy p

* Shorthand for g, (RXS)

Join example

* Info about users, plus IDs of their groups
User Dqlllser.uid=Me,>‘n’1ber.uid Member

123 Milhouse 10 0.2
857 Lisa 8 0.7

v
Prefix a column reference

with table name and ““.” to
disambiguate identically named
columns from different tables

Derived operator: natural join

* Input: two tables R and S
* Notation: R = §

* Purpose: relate rows from two tables, and

* Enforce equality between identically named columns
* Eliminate one copy of identically named columns

* Shorthand for m; (R X, S), where

* p equates each pair of columns commontoR and S

* L is the union of column names from R and S (with
duplicate columns removed)

Natural join example

User X Member = m,(User <, Member)

= Myid,name,age,pop,gid (USQT X User.uid= Membe?")
Member.uid

123 Milhouse 10 02 123 gov

857 Lisa 8 0.7 857 abc
857 gov

Union

* Input: two tables R and S

e Notation: R U S
e R and S must have identical schema

* Output:
e Has the same schemaas R and S
* Contains all rows in R and all rows in S (with duplicate
rows removed)

Difference

* Input: two tables R and S

* Notation: R — S
e R and S must have identical schema
* Output:
e Has the same schemaas R and S
e Contains all rows in R that arenotin S

Derived operator: intersection

* Input: two tables R and S

e Notation: RN S
e R and S must have identical schema

* Output:
e Has the same schemaas R and S
e Contains all rows that arein both R and S

e ShorthandforR — (R — S)
* Also equivalentto S — (S — R)
*AndtoR X S

Renaming

* Input: a table R
* Notation: p< R, R, or R
* Purpose: “rename” a table and/or its columns

* Output: a table with the same rows as R, but called
differently

e Used to

* Avoid confusion caused by identical column names
* Create identical column names for natural joins

* As with all other relational operators, it doesn’t
modify the database
* Think of the renamed table as a copy of the original

Renaming example

* IDs of users who belong to at least two groups
Member <, Member

TTyid (Member NrMember.uid=Member.uid A Member)

Member&ﬁcm@%gid

T[uidl NUid1=Uid2 N gldl?'—'gldz

Expression tree notation

Also called logical
Plan tree

n'-U,ldl

Nouid;=uid, A gid,#gid,

/\

p(uldlhgldl) p(ulengdZ)

Member Member

Summary of core operators

* Selection: o, R

* Projection: m; R

* Cross product: RXS
* Union:tRUS

* Difference: R — S

¢ Renaming: pS(AerZ:---)R
* Does not really add “processing” power

Summary of derived operators

e Join: R X, S
* Natural join: R @ S
° Intersection: RN S

* Many more
* Semijoin, anti-semijoin, quotient, ...

User (uid, name, age, pop)
Group (gid, name)

An exercise Verber (uid, g

* Names of users in Lisa’s groups
Their names Tname

k
Users in / \

Lisa’s groups Tyid User

X

Lisa’s groups ng{ }embe‘r

|
Who’s Lisa? / X \

Oname="Lisa" Member

User

User (uid, name, age, pop)
Group (gid, name)

Another exercise Memper (i, g

* IDs of groups that Lisa doesn’t belong to

All group IDs IDs of Lisa’s groups
Mgid Mgid
Group D4

Member Oname="Lisa"

User

User (uid, name, age, pop)
Group (gid, name)

A trickier exercise Member (id,)

* Who are the most popular?
* Who do NOT have the highest pop rating?
* Whose pop is lower than somebody else’s?

u/\

User1 uid

US@T DqUse‘rl pop<User2 .pop

pUS{ %@TZ

User User

Monotone operators

N N . T Iy

* If some old output rows may need to be removed
* Then the operator is

* Otherwise the operator is

* That is, old output rows always remain “correct” when
more rows are added to the input

* Formally, for a monotone operator op:
forany R, R’

Classification of relational operators

* Selection: o, R Monotone
* Projection: m; R Monotone
* Cross product: RXS Monotone

* JointR ™, § Monotone
* Naturaljoin:R @S Monotone
* Union: RUS Monotone
* Difference:R — S Monotone w.r.t. R; non-monotone w.r.t §

e Intersection: RN S Monotone

Why is “—"" needed for “highest”?

* Composition of monotone operators produces a

* Old output rows remain “correct” when more rows are
added to the input
* Is the “highest” query monotone?
* No!
* Current highest popis 0.9
* Add another row with pop 0.91
* Old answer is invalidated

&S0 it must use difference!

Extensions to relational algebra

* Duplicate handling (“bag algebra”)
* Grouping and aggregation

* “Extension” (or “extended projection”) to allow
new column values to be computed

= All these will come up when we talk about SQL

& But for now we will stick to standard relational
algebra without these extensions

Why is RA a good query language?

* Simple
* A small set of core operators
* Semantics are easy to grasp
* Declarative?
* Yes, compared with older languages like CODASYL
* Though operators do look somewhat “procedural”
* Complete?
* With respect to what?

Relational calculus

e {fu.uid | u € User A
—(3u’ € User:u.pop < u'.pop)}, or

e {fu.uid | u € User A
(Vu' € User:u.pop = u'.pop)}
* Relational algebra = “safe” relational calculus

* Every query expressible as a safe relational calculus
query is also expressible as a relational algebra query

* And vice versa

* Example of an “unsafe” relational calculus query

e {u.name | = (u € User)}
* Cannot evaluate it just by looking at the database

Turing machine

* A conceptual device that can
execute any computer algorithm

* Approximates what general-
purpose programming languages
can do

o Eg, Python, Java, C++, Alan Tring (1912-1954)

%S0 how does relational algebra compare with a
Turing machine?

http://en.wikipedia.org/wiki/File:Alan Turing_photo.jpg

40

Limits of relational algebra

* Relational algebra has

» Example: given relation Friend(uid1, uid2), who can Bart
reach in his social network with any number of hops?

* Writing this query in RA is impossible!
* So RAis not as powerful as general-purpose languages
* But why not?
* Optimization becomes
= Simplicity is empowering

* Besides, you can always implement it at the application
level, and recursion is added to SQL nevertheless!

