Relational Database Design:
E/R-Relational Translation

Introduction to Databases
CompSci 316 Spring 2019

DUKE

COMPUTER SCIENCE

|

Announcements (Tue. Jan. 22)

-

* Homework 1 due in 2 weeks -
* Please start early

* Problem 3 (ER-diagram) posted on gradiance

* Sudeepa’s office hour this week:

* 1-2 pm on Thursday - Jan 24 — LSRC D325
 No office hour tomorrow (Wed)

Database design steps: review

* Understand the real-world domain being modeled
* Specify it using a database design model (e.g., E/R)

* Translate specification to the data model of DBMS
(e.g., relational)

e Create DBMS schema

@~ Next: translating E/R design to relational schema

E/R model: review

* Entity sets
* Keys
* Weak entity sets

* Relationship sets

* Attributes on relationships
Multiplicity
Roles

Binary versus n-ary relationships

* Modeling n-ary relationships with weak entity sets and binary
relationships

ISA relationships

Translating entity sets

* An entity set translates directly to a table
* Attributes — columns
* Key attributes — key columns

<>

romDate

Translating weak entity sets

 Remember the “borrowed” key attributes
 Watch out for attribute name conflicts

Translating relationship sets

* Arelationship set translates to a table
* Keys of connected entity sets — columns
* Attributes of the relationship set (if any) — columns

* Multiplicity of the relationship set determines the key of

v

the table

Users

)

1 91
V2 4

9

Groups

gid

M (widy 340 47)

More examples

B

m“o‘

Of
parent

Users

IsParentO

Users

child

member

initiator

YA 14 '3‘

IsMemberO Groups

\\/ r
@
al l, i ‘
Parent (parent_uid, child _uid)

T3

Member (uid, initiator uid, gid)

Translating double diamonds?

* Recall that a double-diamond (supporting)
relationship set connects a weak entity set to
another entity set

* No need to translate because the relationship is
implicit in the weak entity set’s translation

— Coane
Rooms ' Buildings
S

Seats

0y

is subsumed by
Room (building_name, room number, capacity)

0y

Translating subclasses & ISA: approach -

approach ()

* An entity is represented in the table for each subclass to
which it belongs

* Atable includes only the attributes directly attached to
the corresponding entity set, plus the inherited key

<>

romDate

Users Groups

Group (gid, name)
€ User (uid, name)
Member (uid, gid, from_date)

(142, Bart)

Translating subclasses & ISA: approach 2

approach ()

* An entity is only represented in one table (the most
specific entity set to which the entity belongs)

* Atableincludes the attributes attached to the
corresponding entity set, plus all inherited attributes

<>

romDate

Users Groups

Group (gid, name)
(142, Bart) € User (uid, name)
Member (uid, gid, from_date)

Translating subclasses & ISA: approach 3

approach ()

* One relation for the root entity set, with all attributes found in

the network of subclasses (plus a “type” attribute when
needed)

* Use a special NULL value in columns that are not relevant for a

particular entity
<>

romDate

Users Groups

Group (gid, name)
) User (uid, name,)
Member (uid, gid, from_date)

(142, Bart

Comparison of three approaches

* Entity-in-all-superclasses

e User (uid, name), PaidUser (uid, avatar)

* Pro: All users are found in one table

* Con: Attributes of paid users are scattered in different tables
* Entity-in-most-specific-class

e User (uid, name), PaidUser (uid, name, avatar)

* Pro: All attributes of paid users are found in one table

* Con: Users are scattered in different tables

* All-entities-in-one-table
* User (uid, [type, Jname, avatar)
* Pro: Everything is in one table
* Con:Lots of NULL’s; complicated if class hierarchy is complex

A complete example

Trains LocalTrainStops

R

engineer A
ISA

y

Stations

N
ISA

LocalTrams

LocalStations

/

ExpressTrains

ExpressStations

4R
Train (number, engineer)

4R

LocalTrain (number)

ExpressTrainStops

ExpressTrain (number)

LocalTrainStop (local_train_number, time)

Station (name, address) LocalTrainStopsAtStation (local train_number, time, station_name)

LocalStation (hame) ExpressTrainStop (express_train_number, time)

ExpressStation (name) ExpressTrainStopsAtStation (express_train_number, time,
express_station name)

15

Simplifications and refinements

Train (number, engineer), LocalTrain (number), ExpressTrain (number)
Station (name, address), LocalStation (name), ExpressStation (name)
LocalTrainStop (local train_number, station name, time)
ExpressTrainStop (express train_number, express_station name, time)

e Eliminate LocalTrain table

* Redundant: can be computed as
Tumpber (ITain) — ExpressTrain

* Slightly harder to check that local train_number is
indeed a local train number

* Eliminate LocalStation table
* It can be computed as m,ymper (Station) — ExpressStation

An alternative design

number name

Train (number, engineer, type) Trains @ Stations
Station (name, address, type) EL Cime EfL?

TrainStop (train_number, station name, time)

* Encode the type of train/station as a column rather
than creating subclasses

* What about the following constraints?
* Type must be either “local” or “express”
» Express trains only stop at express stations
® They can be expressed/declared explicitly as database
constraints in SQL (as we will see later in course)

* Arguably a better design because it is simpler!

17

Design principles

* KISS
* Keep It Simple, Stupid

* Avoid redundancy

* Redundancy wastes space, complicates modifications,
promotes inconsistency

* Capture essential constraints, but don’t introduce
unnecessary restrictions

* Use your common sense

* Warning: mechanical translation procedures given in this
lecture are no substitute for your own judgment

http://ungenius.files.wordpress.com/2010/03/thehomer.jpg

