
Relational Database
Design Theory

Introduction to Databases

CompSci 316 Spring 2019

Announcements (Thu. Jan 24)

• Homework #1 due on Feb 5

• Course project description posted (after class)
• Read it!

• Form your teams! 3-4 students

• Project mixer on Feb 5

2

Motivation

• Why is UserGroup (uid, uname, gid) a bad design?
• It has redundancy—user name is recorded multiple

times, once for each group that a user belongs to
• Leads to update, insertion, deletion anomalies

• Wouldn’t it be nice to have a systematic approach
to detecting and removing redundancy in designs?
• Dependencies, decompositions, and normal forms

3

uid uname gid

142 Bart dps

123 Milhouse gov

857 Lisa abc

857 Lisa gov

456 Ralph abc

456 Ralph gov

… … …

Functional dependencies

• A functional dependency (FD) has the form 𝑋 → 𝑌,
where 𝑋 and 𝑌 are sets of attributes in a relation 𝑅

• 𝑋 → 𝑌 means that whenever two tuples in 𝑅 agree
on all the attributes in 𝑋, they must also agree on
all attributes in 𝑌

4

𝑿 𝒀 𝒁

𝑎 𝑏 𝑐

𝑎 ? ?

… … …

𝑿 𝒀 𝒁

𝑎 𝑏 𝑐

𝑎 𝑏 ?

… … …Must be 𝑏 Could be anything

FD examples

Address (street_address, city, state, zip)

• street_address, city, state→ zip

• zip → city, state

• zip, state→ zip?
• This is a trivial FD

• Trivial FD: LHS ⊇ RHS

• zip→ state, zip?
• This is non-trivial, but not completely non-trivial

• Completely non-trivial FD: LHS ∩ RHS = ∅

5

Redefining “keys” using FD’s

A set of attributes 𝐾 is a key for a relation 𝑅 if

• 𝐾 → all (other) attributes of 𝑅
• That is, 𝐾 is a “super key”

• No proper subset of 𝐾 satisfies the above condition
• That is, 𝐾 is minimal

6

Reasoning with FD’s

Given a relation 𝑅 and a set of FD’s ℱ

• Does another FD follow from ℱ?
• Are some of the FD’s in ℱ redundant (i.e., they follow

from the others)?

• Is 𝐾 a key of 𝑅?
• What are all the keys of 𝑅?

7

Attribute closure

• Given 𝑅, a set of FD’s ℱ that hold in 𝑅, and a set of
attributes 𝑍 in 𝑅:
The closure of 𝑍 (denoted 𝑍+) with respect to ℱ is
the set of all attributes 𝐴1, 𝐴2, … functionally
determined by 𝑍 (that is, 𝑍 → 𝐴1𝐴2…)

• Algorithm for computing the closure
• Start with closure = 𝑍

• If 𝑋 → 𝑌 is in ℱ and 𝑋 is already in the closure, then also
add 𝑌 to the closure

• Repeat until no new attributes can be added

8

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Assume that there is a 1-1 correspondence between
our users and Twitter accounts

• uid → uname, twitterid

• twitterid → uid

• uid, gid → fromDate

Not a good design, and we will see why shortly

9

Example of computing closure

• gid, twitterid + = ?

• twitterid→ uid
• Add uid

• Closure grows to { gid, twitterid, uid }

• uid→ uname, twitterid
• Add uname, twitterid

• Closure grows to { gid, twitterid, uid, uname }

• uid, gid → fromDate
• Add fromDate

• Closure is now all attributes in UserJoinsGroup

10

ℱ includes:
uid → uname, twitterid
twitterid → uid
uid, gid → fromDate

Using attribute closure

Given a relation 𝑅 and set of FD’s ℱ

• Does another FD 𝑋 → 𝑌 follow from ℱ?
• Compute 𝑋+ with respect to ℱ

• If 𝑌 ⊆ 𝑋+, then 𝑋 → 𝑌 follows from ℱ

• Is 𝐾 a key of 𝑅?
• Compute 𝐾+ with respect to ℱ

• If 𝐾+ contains all the attributes of 𝑅, 𝐾 is a super key

• Still need to verify that 𝐾 is minimal (how?)

11

Rules of FD’s

• Armstrong’s axioms
• Reflexivity: If 𝑌 ⊆ 𝑋, then 𝑋 → 𝑌

• Augmentation: If 𝑋 → 𝑌, then 𝑋𝑍 → 𝑌𝑍 for any 𝑍

• Transitivity: If 𝑋 → 𝑌 and 𝑌 → 𝑍, then 𝑋 → 𝑍

• Rules derived from axioms
• Splitting: If 𝑋 → 𝑌𝑍, then 𝑋 → 𝑌 and 𝑋 → 𝑍

• Combining: If 𝑋 → 𝑌 and 𝑋 → 𝑍, then 𝑋 → 𝑌𝑍

Using these rules, you can prove or disprove an FD
given a set of FDs

12

Non-key FD’s

• Consider a non-trivial FD 𝑋 → 𝑌 where 𝑋 is not a
super key
• Since 𝑋 is not a super key, there are some attributes (say
𝑍) that are not functionally determined by 𝑋

13

𝑿 𝒀 𝒁

𝑎 𝑏 𝑐1

𝑎 𝑏 𝑐2

… … …

That 𝑏 is associated with 𝑎 is recorded multiple times:
redundancy, update/insertion/deletion anomaly

Example of redundancy

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

• uid → uname, twitterid

(… plus other FD’s)

14

uid uname twitterid gid fromDate

142 Bart @BartJSimpson dps 1987-04-19

123 Milhouse @MilhouseVan_ gov 1989-12-17

857 Lisa @lisasimpson abc 1987-04-19

857 Lisa @lisasimpson gov 1988-09-01

456 Ralph @ralphwiggum abc 1991-04-25

456 Ralph @ralphwiggum gov 1992-09-01

… … … … …

Decomposition

• Eliminates redundancy

• To get back to the original relation:

15

⋈

uid uname twitterid gid fromDate

142 Bart @BartJSimpson dps 1987-04-19

123 Milhouse @MilhouseVan_ gov 1989-12-17

857 Lisa @lisasimpson abc 1987-04-19

857 Lisa @lisasimpson gov 1988-09-01

456 Ralph @ralphwiggum abc 1991-04-25

456 Ralph @ralphwiggum gov 1992-09-01

… … … … …

uid uname twitterid

142 Bart @BartJSimpson

123 Milhouse @MilhouseVan_

857 Lisa @lisasimpson

456 Ralph @ralphwiggum

… … …

uid gid fromDate

142 dps 1987-04-19

123 gov 1989-12-17

857 abc 1987-04-19

857 gov 1988-09-01

456 abc 1991-04-25

456 gov 1992-09-01

… … …

uid twitterid

142 @BartJSimpson

123 @MilhouseVan_

857 @lisasimpson

456 @ralphwiggum

… …

uid uname

142 Bart

123 Milhouse

857 Lisa

456 Ralph

… …

Unnecessary decomposition

• Fine: join returns the original relation

• Unnecessary: no redundancy is removed; schema is
more complicated (and uid is stored twice!)

16

uid uname twitterid

142 Bart @BartJSimpson

123 Milhouse @MilhouseVan_

857 Lisa @lisasimpson

456 Ralph @ralphwiggum

… … …

uid fromDate

142 1987-04-19

123 1989-12-17

857 1987-04-19

857 1988-09-01

456 1991-04-25

456 1992-09-01

… …

Bad decomposition

• Association between gid and fromDate is lost

• Join returns more rows than the original relation

17

uid gid fromDate

142 dps 1987-04-19

123 gov 1989-12-17

857 abc 1987-04-19

857 gov 1988-09-01

456 abc 1991-04-25

456 gov 1992-09-01

… … …
uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

Lossless join decomposition

• Decompose relation 𝑅 into relations 𝑆 and 𝑇
• 𝑎𝑡𝑡𝑟𝑠 𝑅 = 𝑎𝑡𝑡𝑟𝑠 𝑆 ∪ 𝑎𝑡𝑡𝑟𝑠 𝑇

• 𝑆 = 𝜋𝑎𝑡𝑡𝑟𝑠 𝑆 𝑅

• 𝑇 = 𝜋𝑎𝑡𝑡𝑟𝑠 𝑇 𝑅

• The decomposition is a lossless join decomposition
if, given known constraints such as FD’s, we can
guarantee that 𝑅 = 𝑆 ⋈ 𝑇

• Any decomposition gives 𝑅 ⊆ 𝑆 ⋈ 𝑇 (why?)
• A lossy decomposition is one with 𝑅 ⊂ 𝑆 ⋈ 𝑇

18

uid gid fromDate

142 dps 1987-04-19

123 gov 1989-12-17

857 abc 1987-04-19

857 gov 1988-09-01

456 abc 1991-04-25

456 gov 1992-09-01

… … …

uid gid fromDate

142 dps 1987-04-19

123 gov 1989-12-17

857 abc 1988-09-01

857 gov 1987-04-19

456 abc 1991-04-25

456 gov 1992-09-01

… … …

Loss? But I got more rows!

• “Loss” refers not to the loss of tuples, but to the
loss of information
• Or, the ability to distinguish different original relations

19

No way to tell
which is the original relation

uid fromDate

142 1987-04-19

123 1989-12-17

857 1987-04-19

857 1988-09-01

456 1991-04-25

456 1992-09-01

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

Questions about decomposition

• When to decompose

• How to come up with a correct decomposition (i.e.,
lossless join decomposition)

20

An answer: BCNF

• A relation 𝑅 is in Boyce-Codd Normal Form if
• For every non-trivial FD 𝑋 → 𝑌 in 𝑅, 𝑋 is a super key

• That is, all FDs follow from “key → other attributes”

• When to decompose
• As long as some relation is not in BCNF

• How to come up with a correct decomposition
• Always decompose on a BCNF violation (details next)

Then it is guaranteed to be a lossless join
decomposition!

21

BCNF decomposition algorithm

• Find a BCNF violation
• That is, a non-trivial FD 𝑋 → 𝑌 in 𝑅 where 𝑋 is not a super

key of 𝑅

• Decompose 𝑅 into 𝑅1 and 𝑅2, where
• 𝑅1 has attributes 𝑋 ∪ 𝑌

• 𝑅2 has attributes 𝑋 ∪ 𝑍, where 𝑍 contains all attributes
of 𝑅 that are in neither 𝑋 nor 𝑌

• Repeat until all relations are in BCNF

22

BCNF decomposition example
23

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

uid → uname, twitterid
twitterid → uid
uid, gid → fromDate

BCNF violation: uid → uname, twitterid

User (uid, uname, twitterid) Member (uid, gid, fromDate)

BCNF
BCNF

uid → uname, twitterid
twitterid → uid

uid, gid → fromDate

Another example
24

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

uid → uname, twitterid
twitterid → uid
uid, gid → fromDate

BCNF violation: twitterid → uid

UserId (twitterid, uid)

Member (twitterid, gid, fromDate)

BCNF

BCNF

twitterid → uname
twitterid, gid → fromDate

UserJoinsGroup’ (twitterid, uname, gid, fromDate)

BCNF violation: twitterid → uname

UserName (twitterid, uname)

BCNF

Why is BCNF decomposition lossless

Given non-trivial 𝑋 → 𝑌 in 𝑅 where 𝑋 is not a super
key of 𝑅, need to prove:

• Anything we project always comes back in the join:
𝑅 ⊆ 𝜋𝑋𝑌 𝑅 ⋈ 𝜋𝑋𝑍 𝑅

• Sure; and it doesn’t depend on the FD

• Anything that comes back in the join must be in the
original relation:

𝑅 ⊇ 𝜋𝑋𝑌 𝑅 ⋈ 𝜋𝑋𝑍 𝑅
• Proof will make use of the fact that 𝑋 → 𝑌

25

Recap

• Functional dependencies: a generalization of the
key concept

• Non-key functional dependencies: a source of
redundancy

• BCNF decomposition: a method for removing
redundancies
• BNCF decomposition is a lossless join decomposition

• BCNF: schema in this normal form has no
redundancy due to FD’s

26

BCNF = no redundancy?

• User (uid, gid, place)
• A user can belong to multiple groups

• A user can register places she’s visited

• Groups and places have nothing to do with other

• FD’s?
• None

• BCNF?
• Yes

• Redundancies?
• Tons!

27

uid gid place

142 dps Springfield

142 dps Australia

456 abc Springfield

456 abc Morocco

456 gov Springfield

456 gov Morocco

… … …

Multivalued dependencies

• A multivalued dependency (MVD) has the form
𝑋 ↠ 𝑌, where 𝑋 and 𝑌 are sets of attributes in a
relation 𝑅

• 𝑋 ↠ 𝑌 means that whenever
two rows in 𝑅 agree on all the
attributes of 𝑋, then we can
swap their 𝑌 components and
get two rows that are also in 𝑅

28

𝑿 𝒀 𝒁

𝑎 𝑏1 𝑐1

𝑎 𝑏2 𝑐2

… … …

𝑿 𝒀 𝒁

𝑎 𝑏1 𝑐1

𝑎 𝑏2 𝑐2

𝑎 𝑏2 𝑐1

𝑎 𝑏1 𝑐2

… … …

MVD examples

User (uid, gid, place)

• uid↠ gid

• uid↠ place
• Intuition: given uid, gid and place are “independent”

• uid, gid ↠ place
• Trivial: LHS ∪ RHS = all attributes of 𝑅

• uid, gid ↠ uid
• Trivial: LHS ⊇ RHS

29

Complete MVD + FD rules

• FD reflexivity, augmentation, and transitivity

• MVD complementation:
If 𝑋 ↠ 𝑌, then 𝑋 ↠ 𝑎𝑡𝑡𝑟𝑠 𝑅 − 𝑋 − 𝑌

• MVD augmentation:
If 𝑋 ↠ 𝑌 and 𝑉 ⊆ 𝑊, then 𝑋𝑊 ↠ 𝑌𝑉

• MVD transitivity:
If 𝑋 ↠ 𝑌 and 𝑌 ↠ 𝑍, then 𝑋 ↠ 𝑍 − 𝑌

• Replication (FD is MVD):
If 𝑋 → 𝑌, then 𝑋 ↠ 𝑌

• Coalescence:
If 𝑋 ↠ 𝑌 and 𝑍 ⊆ 𝑌 and there is some 𝑊 disjoint
from 𝑌 such that 𝑊 → 𝑍, then 𝑋 → 𝑍

30

Try proving things using these!?

An elegant solution: chase

• Given a set of FD’s and MVD’s 𝒟, does another
dependency 𝑑 (FD or MVD) follow from 𝒟?

• Procedure
• Start with the premise of 𝑑, and treat them as “seed”

tuples in a relation

• Apply the given dependencies in 𝒟 repeatedly
• If we apply an FD, we infer equality of two symbols

• If we apply an MVD, we infer more tuples

• If we infer the conclusion of 𝑑, we have a proof

• Otherwise, if nothing more can be inferred, we have a
counterexample

31

Proof by chase

• In 𝑅 𝐴, 𝐵, 𝐶, 𝐷 , does 𝐴 ↠ 𝐵 and 𝐵 ↠ 𝐶 imply that
𝐴 ↠ 𝐶?

32

𝑨 𝑩 𝑪 𝑫

𝑎 𝑏1 𝑐1 𝑑1

𝑎 𝑏2 𝑐2 𝑑2

𝑨 𝑩 𝑪 𝑫

𝑎 𝑏1 𝑐2 𝑑1

𝑎 𝑏2 𝑐1 𝑑2

Have: Need:

𝑎 𝑏2 𝑐1 𝑑1

𝑎 𝑏1 𝑐2 𝑑2
𝐴 ↠ 𝐵

𝑎 𝑏2 𝑐1 𝑑2

𝑎 𝑏2 𝑐2 𝑑1
𝐵 ↠ 𝐶

𝑎 𝑏1 𝑐2 𝑑1

𝑎 𝑏1 𝑐1 𝑑2
𝐵 ↠ 𝐶

A

A

Another proof by chase

• In 𝑅 𝐴, 𝐵, 𝐶, 𝐷 , does 𝐴 → 𝐵 and 𝐵 → 𝐶 imply that
𝐴 → 𝐶?

33

𝑨 𝑩 𝑪 𝑫

𝑎 𝑏1 𝑐1 𝑑1

𝑎 𝑏2 𝑐2 𝑑2

Have: Need:
𝑐1 = 𝑐2

𝐴 → 𝐵 𝑏1 = 𝑏2

𝐵 → 𝐶 𝑐1 = 𝑐2

A

In general, with both MVD’s and FD’s,
chase can generate both new tuples and new equalities

Counterexample by chase

• In 𝑅 𝐴, 𝐵, 𝐶, 𝐷 , does 𝐴 ↠ 𝐵𝐶 and 𝐶𝐷 → 𝐵 imply
that 𝐴 → 𝐵?

34

𝑨 𝑩 𝑪 𝑫

𝑎 𝑏1 𝑐1 𝑑1

𝑎 𝑏2 𝑐2 𝑑2

Have: Need:
𝑏1 = 𝑏2

𝑎 𝑏2 𝑐2 𝑑1

𝑎 𝑏1 𝑐1 𝑑2
𝐴 ↠ 𝐵𝐶

D

Counterexample!

4NF

• A relation 𝑅 is in Fourth Normal Form (4NF) if
• For every non-trivial MVD 𝑋 ↠ 𝑌 in 𝑅, 𝑋 is a superkey

• That is, all FD’s and MVD’s follow from “key → other
attributes” (i.e., no MVD’s and no FD’s besides key
functional dependencies)

• 4NF is stronger than BCNF
• Because every FD is also a MVD

35

4NF decomposition algorithm

• Find a 4NF violation
• A non-trivial MVD 𝑋 ↠ 𝑌 in 𝑅 where 𝑋 is not a superkey

• Decompose 𝑅 into 𝑅1 and 𝑅2, where
• 𝑅1 has attributes 𝑋 ∪ 𝑌

• 𝑅2 has attributes 𝑋 ∪ 𝑍 (where 𝑍 contains 𝑅 attributes
not in 𝑋 or 𝑌)

• Repeat until all relations are in 4NF

• Almost identical to BCNF decomposition algorithm

• Any decomposition on a 4NF violation is lossless

36

4NF decomposition example
37

uid gid place

142 dps Springfield

142 dps Australia

456 abc Springfield

456 abc Morocco

456 gov Springfield

456 gov Morocco

… … …

User (uid, gid, place)
4NF violation: uid ↠ gid

Member (uid, gid) Visited (uid, place)
4NF 4NFuid gid

142 dps

456 abc

456 gov

… …

uid place

142 Springfield

142 Australia

456 Springfield

456 Morocco

… …

Summary

• Philosophy behind BCNF, 4NF:
Data should depend on the key,
the whole key,
and nothing but the key!
• You could have multiple keys though

• Other normal forms
• 3NF: More relaxed than BCNF; will not remove

redundancy if doing so makes FDs harder to enforce

• 2NF: Slightly more relaxed than 3NF

• 1NF: All column values must be atomic

38

