Relational Database Design Theory

Introduction to Databases CompSci 316 Spring 2019

Announcements (Thu. Jan 24)

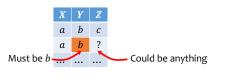
- Homework #1 due on Feb 5
- Course project description posted
 - · Read it!
 - Form your teams! 3-4 students

Motivation

- Why is UserGroup (uid, uname, gid) a bad design?
 - It has redundancy—user name is recorded multiple times, once for each group that a user belongs to
 - Leads to update, insertion, deletion anomalies
- Wouldn't it be nice to have a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form $X \to Y$, where X and Y are sets of attributes in a relation R
- *X* → *Y* means that whenever two tuples in *R* agree on all the attributes in *X*, they must also agree on all attributes in *Y*



FD examples

Address (street address, city, state, zip)

- street_address, city, state → zip
- zip → city, state
- zip, state \rightarrow zip?
- zip → state, zip?

Redefining "keys" using FD's

A set of attributes K is a key for a relation R if

- $K \rightarrow \text{all (other)}$ attributes of R
 - That is, *K* is a "super key"
- No proper subset of *K* satisfies the above condition
 - That is, *K* is minimal

Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}

- Does another FD follow from \mathcal{F} ?
 - Are some of the FD's in F redundant (i.e., they follow from the others)?
- Is *K* a key of *R*?
 - What are all the keys of *R*?

Attribute closure

 Given R, a set of FD's F that hold in R, and a set of attributes Z in R:

The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, ...\}$ functionally determined by Z (that is, $Z \to A_1 A_2$...)

- Algorithm for computing the closure
 - Start with closure = Z
 - If $X \to Y$ is in $\mathcal F$ and X is already in the closure, then also add Y to the closure
 - Repeat until no new attributes can be added

A more complex example

UserJoinsGroup (uid, uname, twitterid, gid, fromDate) Assume that there is a 1-1 correspondence between our users and Twitter accounts

- uid → uname, twitterid
- twitterid \rightarrow uid
- uid, gid \rightarrow fromDate

Not a good design, and we will see why shortly

Example of computing closure

twitterid → uid

uid, gid → fromDate

- {gid, twitterid}⁺ = ?
- twitterid → uid
 - · Add uid
 - Closure grows to { gid, twitterid, uid }
- uid → uname, twitterid
 - Add uname, twitterid
 - Closure grows to { gid, twitterid, uid, uname }
- uid, gid → fromDate
 - Add fromDate
 - Closure is now all attributes in UserJoinsGroup

Using attribute closure

Given a relation R and set of FD's \mathcal{F}

- Does another FD $X \to Y$ follow from \mathcal{F} ?
 - Compute X^+ with respect to $\mathcal F$
 - If $Y \subseteq X^+$, then $X \to Y$ follows from \mathcal{F}
- Is *K* a key of *R*?
 - Compute K^+ with respect to $\mathcal F$
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that *K* is minimal (how?)

Rules of FD's

- Armstrong's axioms
 - Reflexivity: If $Y \subseteq X$, then $X \to Y$
 - Augmentation: If $X \to Y$, then $XZ \to YZ$ for any Z
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Rules derived from axioms
 - Splitting: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - Combining: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- Using these rules, you can prove or disprove an FD given a set of FDs

Non-key FD's

- Consider a non-trivial FD X → Y where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

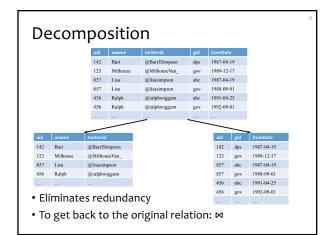
That b is associated with a is recorded multiple times: redundancy, update/insertion/deletion anomaly

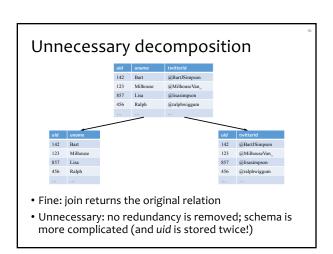
Example of redundancy

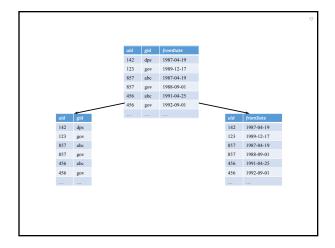
UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

- uid \rightarrow uname, twitterid
- (... plus other FD's)

uid	uname	twitterid	gid	fromDate
142	Bart	@BartJSimpson	dps	1987-04-19
123	Milhouse	@MilhouseVan_	gov	1989-12-17
857	Lisa	@lisasimpson	abc	1987-04-19
857	Lisa	@lisasimpson	gov	1988-09-01
456	Ralph	@ralphwiggum	abc	1991-04-25
456	Ralph	@ralphwiggum	gov	1992-09-01

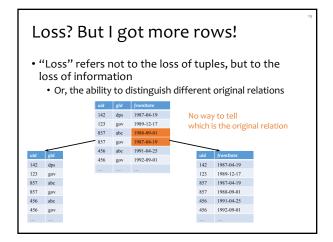






Lossless join decomposition

- Decompose relation R into relations S and T
 - $attrs(R) = attrs(S) \cup attrs(T)$
 - $S = \pi_{attrs(S)}(R)$
 - $T = \pi_{attrs(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD's, we can guarantee that $R=S\bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$



Questions about decomposition

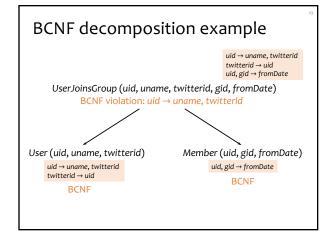
- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

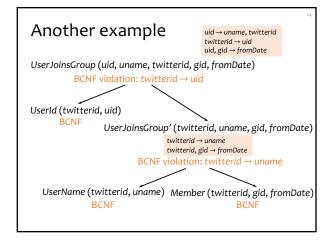
An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from "key \rightarrow other attributes"
- When to decompose
 - · As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD X → Y in R where X is not a super key of R
- Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF





Why is BCNF decomposition lossless

Given non-trivial $X \to Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join: $R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 - Sure; and it doesn't depend on the FD
- Anything that comes back in the join must be in the original relation:

 $R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$

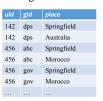
• Proof will make use of the fact that $X \to Y$

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- · BCNF decomposition: a method for removing redundancies
 - BNCF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD's

BCNF = no redundancy?

- User (uid, gid, place)
 - A user can belong to multiple groups
 - A user can register places she's visited
 - · Groups and places have nothing to do with other
 - FD's?
 - None
 - BCNF?
 - Yes
 - · Redundancies?
 - Tons!



Multivalued dependencies

- A multivalued dependency (MVD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- *X* → *Y* means that whenever two rows in R agree on all the attributes of *X*, then we can swap their *Y* components and get two rows that are also in $R \prec$

MVD examples

User (uid, gid, place)

- uid --> gid
- uid → place
 - Intuition: given uid, gid and place are "independent"
- uid, gid → place
 - Trivial: LHS \cup RHS = all attributes of R
- uid, gid → uid
 - Trivial: LHS ⊇ RHS

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:

If $X \rightarrow Y$, then $X \rightarrow attrs(R) - X - Y$

• MVD augmentation:

If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$

• MVD transitivity: If X woheadrightarrow Y and Y woheadrightarrow Z, then X woheadrightarrow Z - Y

• Replication (FD is MVD):

If $X \to Y$, then $X \twoheadrightarrow Y$ Try proving things using these!?

Coalescence:

If $X \twoheadrightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \to Z$, then $X \to Z$

An elegant solution: chase

- Given a set of FD's and MVD's \mathcal{D} , does another dependency d (FD or MVD) follow from \mathcal{D} ?
- - Start with the premise of d, and treat them as "seed" tuples in a relation
 - Apply the given dependencies in $\ensuremath{\mathcal{D}}$ repeatedly
 - · If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of d, we have a proof
 - · Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase

• In R(A, B, C, D), does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \twoheadrightarrow C$?

a b_2 c_2 d_1 a b_1 c_1 d_2

 $B \twoheadrightarrow C \qquad a \qquad b_2 \qquad c_1 \qquad d_2$

Another proof by chase

• In R(A, B, C, D), does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

Have:
$$A B C D$$
 Need $a b_1 c_1 d_1$ $a b_2 c_2 d_2$

$$A \rightarrow B$$
 $b_1 = b_2$
 $B \rightarrow C$ $c_1 = c_2$

In general, with both MVD's and FD's, chase can generate both new tuples and new equalities

Counterexample by chase

• In R(A, B, C, D), does $A \rightarrow BC$ and $CD \rightarrow B$ imply

that
$$A \rightarrow B$$
?

Have: $A \mid B \mid C \mid D$
 $a \mid b_1 \mid c_1 \mid d_1$
 $a \mid b_2 \mid c_2 \mid d_2$
 $A \rightarrow BC$
 $A \rightarrow BC$

A $\rightarrow BC$

A $\rightarrow BC$

Reed:

 $b_1 = b_2$
 $b_1 = b_2$
 $b_2 \mid c_2 \mid d_1$
 $b_2 \mid c_2 \mid d_2$

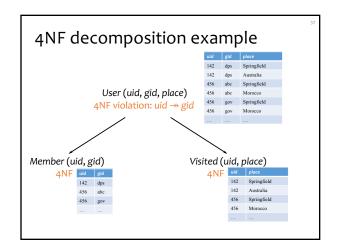
Counterexample!

4NF

- A relation R is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
 - That is, all FD's and MVD's follow from "key → other attributes" (i.e., no MVD's and no FD's besides key functional dependencies)
- 4NF is stronger than BCNF
 - · Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
- Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)
- Repeat until all relations are in 4NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless



Summary

- Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
 - You could have multiple keys though
- Other normal forms
 - 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 - 2NF: Slightly more relaxed than 3NF
 - 1NF: All column values must be atomic