SQL: Part |

Introduction to Databases
CompSci 316 Spring 2019

E. DUKE
COMPUTER SCIENCE

1/29/19

Announcements (Tue. Jan. 29)

* Problem 5 and extra credit problems posted

* Google cloud credit instructions emailed
* Redeem soon! Use @duke.edu email

* Project mixer next Tuesday in class (first half)
* Presentation by Elliott Bolzan (your UTA) about their
project in the last semester — do not miss it!
* You will get an idea how much work and what output is
expected
* Please let me know by next Monday if you want to make
a pitch in front of the class!

sqQL

* SQL:
* Pronounced “S-Q-L” or “sequel”
* The standard query language supported by most DBMS

* A brief history
* IBM System R
* ANSI SQL89
* ANSI SQL92 (SQL2)
* ANSI SQL99 (5QL3)
+ ANSI SQL 2003 (added OLAP, XML, etc.)
* ANSI SQL 2006 (added more XML)
* ANSI SQL 2008, ...

Creating and dropping tables

table_name
(..., column_name column_type, ...);

table_name;
* Examples

create table User(uid integer, name varchar(30),
age integer, pop float);
create table Group(gid char(10), name varchar(100));
create table Member(uid integer, gid char(10));
drop table Member;
drop table Group;
drop table User;
everything from -- to the end of line is ignored
SQL is insensitive to white space
SQL is insensitive to case (e.g., ...Group... is

equivalent to ...GROUP...)

Basic queries: SFW statement

Ay, Ay, .y A
Rl: RZ, (R} Rm
condition;
* Also called an SPJ (select-project-join) query
* Corresponds to ()
relational algebra query:

”Al,Az,...,An (Ucondition (Rl XRZ X 'XRm))

Example: reading a table

* Single-table query, so no cross product here
clause is optional
is a short hand for “all columns”

1/29/19

Example: selection and projection
* Name of users under 18
* When was Lisa born?

» SELECT list can contain expressions

« Can also use built-in functions such as SUBSTR, ABS, etc.
» String literals (case sensitive) are enclosed in

Example: join

* ID’s and names of groups with a user whose name
contains “Simpson”

matches a string against a pattern
. matches any sequence of zero or more characters
» Okay to omit table_namein table_name.column_name if
column_namejis unique

Example: rename

* ID’s of all pairs of users that belong to one group
* Relational algebra query:

Tm, uid,my.uid
(pm1 Member le.gid=mz.gid Amquid>my.uid pmz Member)

* SQL:
SELECT ml.uid , m2.uid
FROM Member , Member

WHERE m1.gid = m2.gid
AND ml.uid > m2.uid;
keyword is completely optional

A more complicated example

* Names of all groups that Lisa and Ralph are both in

Tip: Write the FROM clause first, then WHERE, and
then SELECT

Why SFW statements?

* Out of many possible ways of structuring SQL
statements, why did the designers choose
SELECT-FROM-WHERE?

* Alarge number of queries can be written using only
selection, projection, and cross product (or join)
* Any query that uses only these operators can be written
in a canonical form:
« Example: r a5 5(R p, S) 4y, (7.c0,T)
= TR.A5.B,T.COp; Apyps (RXSXT)

* SELECT-FROM-WHERE captures this canonical form

Set versus bag semantics

* Set

* No duplicates

* Relational model and algebra use set semantics
* Bag

* Duplicates allowed

* Number of duplicates is significant

* SQL uses bag semantics by default

Set versus bag example

TgiaMember [gid |
dps
gov
Member mm b

142 dps
123 gov
857 abc
857 gov SELECT gid m
456 abc FROM Member; 9P
456 gov gov

1/29/19

A case for bag semantics

* Efficiency
* Saves time of eliminating duplicates
* Which one is more useful?

* The first query just returns
* The second query returns

* Besides, SQL provides the option of set semantics with
keyword

Forcing set semantics

* ID’s of all pairs of users that belong to one group

* Say Lisa and Ralph are in both the book club and the student
government

* SELECT ml.uid AS uidl, m2.uid AS uid2 ...

+ With DISTINCT, all duplicate (uid1, uid2) pairs are removed
from the output

Semantics of SFW

* Foreach ty in Ry:
Foreacht, inR;:... ...
For each t,;, in Ryt
If condition is true over tq, t,, ..., ty:

Compute and output Eq, E5, ..., E, asarow
If DISTINCT is present

Eliminate duplicate rows in output

* ty, ty, ..., ty, are often called

SQL set and bag operations

))
* Set semantics
* Duplicates in input tables, if any, are first eliminated
* Duplicates in result are also eliminated (for UNION)
* Exactly like set U, —, and n in relational algebra

))
* Bag semantics
* Think of each row as having an implicit (the
number of times it appears in the table)
* Bag union: up the counts from two tables

the two counts
of the two counts

* Bag difference:
* Bag intersection: take the

Examples of bag operations

Bagl Bag2
apple apple
apple orange
orange orange

(SELECT * FROM Bagl) (SELECT * FROM Bagl) (SELECT * FROM Bagl)
(SELECT * FROM Bag2); (SELECT * FROM Bag2); (SELECT * FROM Bag2);
i

apple apple apple
apple orange

orange
apple
orange

orange

1/29/19

Examples of set versus bag operations

Poke (uid1, uid2, timestamp)
« (SELECT uidl FROM Poke)

(SELECT uid2 FROM Poke);
* Users who

« (SELECT uid1 FROM Poke)

(SELECT uid2 FROM Poke);

* Users who

SQL features covered so far

* SELECT-FROM-WHERE statements (select-
project-join queries)
* Set and bag operations

@ Next: how to nest SQL queries

Table subqueries

* Use query result as a table
* In set and bag operations, FROM clauses, etc.
* Away to “nest” queries

* Example: names of users who poked others more
than others poked them

* SELECT DISTINCT name
FROM User,
((SELECT uid1 AS uid FROM Poke)
EXCEPT ALL
(SELECT uid2 AS uid FROM Poke))
AST
WHERE User.uid = T.uid;

Scalar subqueries

* A query that returns a single row can be used as a
value in WHERE, SELECT, etc.

» Example: users at the same age as Bart
* SELECT *
FROM User What’s Bart’s age?
WHERE age = (SELECT age
FROM User
WHERE name = 'Bart');
* Runtime error if subquery returns more than one row
 Under what condition will this error never occur?
* What if the subquery returns no rows?

* The answer is treated as a special value NULL, and the
comparison with NULL will fail

IN subqueries

checks if x is in the result of

subquery
* Example: users at the same age as (some) Bart
* SELECT *
FROM User What’s Bart’s age?
WHERE age IN (SELECT age

FROM User
WHERE name = 'Bart');

EXISTS subqueries

checks if the result of
subquery is non-empty
* Example: users at the same age as (some) Bart

e SELECT *
FROM User AS u
WHERE (SELECT * FROM User
WHERE name = 'Bart’
AND age = u.age);
* This happens to be a —a subquery

that references tuple variables in surrounding queries

1/29/19

Semantics of subqueries

* SELECT *
FROM User AS
WHERE EXISTS (SELECT * FROM User
WHERE name = 'Bart'
AND age =);

* For each row uin User
* Evaluate the subquery with the value of u.age
* If the result of the subquery is not empty, output u.*
* The DBMS query optimizer may choose to process
the query in an equivalent, but more efficient way
(example?)

Scoping rule of subqueries

* To find out which table a column belongs to
* Start with the immediately surrounding query
* If not found, look in the one surrounding that; repeat if
necessary
* Use table_name.column_name notation and AS
(renaming) to avoid confusion

Another example

—
* SELECT * FROM User u

WHERE EXISTS
(SELECT * FROM Member m
WHERE uid
AND EXISTS v
(SELECT * FROM ber
WHERE uid = u.ui
AND gid <> m.gid));

* Users who join at least two groups

Quantified subqueries

* A quantified subquery can be used syntactically as a
value in a WHERE condition

(forall):
... WHERE x op (subquery) ...
* True iff for all t in the result of subquery, x op t
(exists):
... WHERE x op (subquery) ...
* True iff there exists some t in subquery result such that
xopt
“ Beware
* In common parlance, “any” and “all” seem to be synonyms
* InSQL, ANY really means “some”

Examples of quantified subqueries

* Which users are the most popular?

* SELECT *
FROM User
WHERE pop >= (SELECT pop FROM User);

* SELECT *
FROM User
WHERE NOT
(pop < (SELECT pop FROM User);

@ Use NOT to negate a condition

More ways to get the most popular

* Which users are the most popular?

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Subqueries
* Subqueries allow queries to be written in more
declarative ways (recall the “most popular” query)
* But in many cases they don’t add expressive power

« Try translating other forms of subqueries into [NOT] EXISTS,
which in turn can be translated into join (and difference)
* Watch out for number of duplicates though

“ Next: aggregation and grouping

1/29/19

Aggregates

* Standard SQL aggregate functions: , ,
))
* Example: number of users under 18, and their
average popularity
« SELECT ,
FROM User
WHERE age < 18;
¢ COUNT(*) counts the number of rows

Aggregates with DISTINCT

* Example: How many users are in some group?

* SELECT COUNT(uid)
FROM Member;
is equivalent to:
* SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

Grouping

* SELECT ... FROM ... WHERE ...

s

* Example: compute average popularity for
each age group
* SELECT age, AVG(pop)
FROM User
GROUP BY age;

Semantics of GROUP BY

* Compute FROM (%)
* Compute WHERE (o)

* Compute GROUP BY: group rows according to the
values of GROUP BY columns

» Compute SELECT for each group (n)
* For aggregation functions with DISTINCT inputs, first
eliminate duplicates within the group
® Number of groups =
number of rows in the final output

Example of computing GROUP BY

SELECT age, AVG(pop) FROM User GROUP BY age;

uid | name] age | pop |
R RS Compute GROUP BY: group
e 5 a7 rows according to the values
123 Milhouse 10 02 of GROUP BY columns
456 Ralph 8 0.3 mmm
- 142 Bart 1009
Compute SELECT 123 Milhouse 10 02
for each group 857 Lisa 8 07
m— 456 Ralph 8 03
10 0.55
8 050

Aggregates with no GROUP BY

* An aggregate query with no GROUP BY clause =
all rows go into one group

SELECT AVG(pop) FROM User;

Group all rows
into one group

142 Bart 0 09 142 Bart 0 09
857 Lisa 8 0.7 857 Lisa 8 0.7 » 0.525

123 Milhouse 10 02 123 Milhouse 10 02

456 Ralph 8 03 456 Ralph 8 0.3

Aggregate over
the whole group

1/29/19

Restriction on SELECT

* If a query uses aggregation/group by, then every
column referenced in SELECT must be either
* Aggregated, or
* AGROUP BY column

Why?

Examples of invalid queries
7 ONG‘
« SELECT uid 3ge
FROM User GROUP BY age;
* Recall there is one output row per group
* There can be mnﬁl&ple uid values per group

« SELECT ui! RTAX(pop) FROM User;
* Recall there is only one group for an aggregate query
with no GROUP BY clause
* There can be multiple uid values

* Wishful thinking (that the output uid value is the one
associated with the highest popularity) does NOT work

& Another way of writing the “most popular” query?

HAVING

* Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

* SELECT ... FROM ... WHERE ... GROUP BY ...

» Compute FROM (x)

* Compute WHERE (o)

* Compute GROUP BY: group rows according to the
values of GROUP BY columns

» Compute HAVING (another o over the groups)

» Compute SELECT (r) for each group that passes
HAVING

HAVING examples

* List the average popularity for each age group with
more than a hundred users
* SELECT age, AVG(pop)
FROM User
GROUP BY age
COUNT(*) > 100;
* Can be written using WHERE and table subqueries
* Find average popularity for each age group over 10
* SELECT age, AVG(pop)
FROM User
GROUP BY age
age > 10;
* Can be written using WHERE without table subqueries

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations
* Subqueries
* Aggregation and grouping
* More expressive power than relational algebra

Next: ordering output rows

1/29/19

ORDER BY

« SELECT [DISTINCT] ...
FROM ... WHERE ... GROUP BY ... HAVING ...

s

* ASC = ascending, DESC = descending
» Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried

out, sort the output according to ORDER BY
specification

ORDER BY example

» List all users, sort them by popularity (descending)
and name (ascending)

* SELECT uid, name, age, pop
FROM User

* ASC s the default option

* Strictly speaking, only output columns can appear in
ORDER BY clause (although some DBMS support more)

 Can use sequence numbers instead of names to refer to
output columns: ;

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Subqueries

* Aggregation and grouping

* Ordering

@ Next: NULL’s, outerjoins, data modification,
constraints, ...

