SQL: Part |

Introduction to Databases
CompSci 316 Spring 2019

ﬁ- DUKE
COMPUTER SCIENCE



Announcements (Tue. Jan. 29)

* Problem 5 and extra credit problems posted

* Google cloud credit instructions emailed
* Redeem soon! Use @duke.edu email

* Project mixer next Tuesday in class (first half, 2"
half regular lecture)
* Presentation by Elliott Bolzan (your UTA) about their
project in the last semester — do not miss it!

* You will get an idea how much work and what output is
expected

* Please let me know by next Monday if you want to make
a pitch in front of the class (to recruit teammates)!



SQL

* SQL:
* Pronounced “S-Q-L” or “sequel”
* The standard query language supported by most DBMS

* A brief history
* IBM System R
» ANSI SQL89
* ANSISQL92 (SQL2)
* ANSI SQL99 (SQL3)
* ANSI SQL 2003 (added OLAP, XML, etc.)
* ANSI SQL 2006 (added more XML)
* ANSI SQL 2008, ...



Creating and dropping tables

table_ name
(..., column_name column_type, ...),

table name;
* Examples

create table User(uid integer, name varchar(30),
age integer, pop float);

create table Group(gid char(10), name varchar(100));
create table Member(uid integer, gid char(10));

drop table Member;

drop table Group;

drop table User;



Basic queries: SFW statement

Ay, Ay, ..., A,
R{,R,, ..., Ry,
condition;

* Also called an SPJ (select-project-join) query

* Corresponds to ( )
relational algebra query:

A, Ay,...Ap (Ucondition(R1 X Ry X +++ X Rm))



Example: reading a table

* Single-table query, so no cross product here
clause is optional
is a short hand for “all columns”



Example: selection and projection
* Name of users under 18
* When was Lisa born?

* SELECT list can contain expressions
e Can also use built-in functions such as SUBSTR, ABS, etc.

» String literals (case sensitive) are enclosed in



Example: join

* ID’s and names of groups with a user whose name
contains “Simpson”

matches a string against a pattern
* % matches any sequence of zero or more characters

* Okay to omit table_namein table name.column_name if
column_nameis unique



Example: rename

* ID’s of all pairs of users that belong to one group
* Relational algebra query:

T[ml.uid,mz.uid
(pmlMember le.gid=m2.gid Amqiuid>mo,.uid pmz Member)

* SQL:
SELECT m1.uid , m2.uid
FROM Member , Member

WHERE m1.gid = m2.gid
AND m1.uid > m2.uid;

keyword is completely optional



A more complicated example

* Names of all groups that Lisa and Ralph are both in

Tip: Write the FROM clause first, then WHERE, and
then SELECT



Why SFW statements?

* Out of many possible ways of structuring SQL
statements, why did the designers choose SELECT-
FROM-WHERE?

* Alarge number of queries can be written using only
selection, projection, and cross product (or join)

* Any query that uses only these operators can be written
in a canonical form:

* Example: nR_A,S_B(R Xy, S) X, (T[T_CO'pgT)
= TR.4,8.B,T.COpyApaAps (R X S X T)

* SELECT-FROM-WHERE captures this canonical form



Set versus bag semantics

e Set

* No duplicates
* Relational model and algebra use set semantics

* Bag
* Duplicates allowed

* Number of duplicates is significant
* SQL uses bag semantics by default



User(uid, name, pop) =
Member(uid, gid)

Set versus bag example crouwgd,name

TyigMember m

dps
gov
Member mm abc
142 dps
123 gov
857 abc
857  gov SELECT gid m
456  abc FROM Member;  9PS
456 gov gov
abc
gov
abc

gov



User(uid, name, pop)
Member(uid, gid)

A case for bag semantics o, name)

* Efficiency
* Saves time of eliminating duplicates

* Which one is more useful?

* The first query just returns all possible user ages
* The second query returns the user age distribution

* Besides, SQL provides the option of set semantics
with keyword



User(uid, name, pop)
Member(uid, gid)

Forcing set semantics Group(gid, name)

* ID’s of all pairs of users that belong to one group

* Say Lisa and Ralph are in both the book club and the student
government

e SELECT m1.uid AS uid1l, m2.uid AS uid2 ...

 With DISTINCT, all duplicate (uid1, uid2) pairs are removed from
the output



Semantics of SFW

* Foreach t; in Rq:
Foreacht, inR,:... ...
Foreacht,, inR,,:
If condition is true over ty, t,, ..., t,,:
Compute and output Ey, E,, ..., E,, as arow
If DISTINCT is present
Eliminate duplicate rows in output

* tq, ty, ..., t,, are often called



SQL set and bag operations

) )
Set semantics
* Duplicates in input tables, if any, are first eliminated
* Duplicates in result are also eliminated (for UNION)

Exactly like set U, —, and N in relational algebra

) )
* Bag semantics

Think of each row as having an implicit (the
number of times it appears in the table)

Bag union: up the counts from two tables
Bag difference: the two counts
Bag intersection: take the of the two counts



18

Examples of bag operations

Bagl Bag2
apple apple
apple orange
orange orange
(SELECT * FROM Bag1) (SELECT * FROM Bag1) (SELECT * FROM Bag1)
UNION ALL EXCEPT ALL INTERSECT ALL
(SELECT * FROM Bag2); (SELECT * FROM Bag2); (SELECT * FROM Bag2);
apple apple apple
apple orange
orange
apple
orange

orange



Examples of set versus bag operations

Poke (uid1, uid2, timestamp)
« (SELECT uid1 FROM Poke)

(SELECT uid2 FROM Poke);
* Users who poked others but never got poked by others

e (SELECT uid1 FROM Poke)

(SELECT uid2 FROM Poke);
* Users who poked others more than others poke them



SQL features covered so far

* SELECT-FROM-WHERE statements (select-project-
join queries)

* Set and bag operations

® Next: how to nest SQL queries



Table subqueries

* Use query result as a table
* In set and bag operations, FROM clauses, etc.
* A way to “nest” queries

* Example: names of users who poked others more
than others poked them

* SELECT DISTINCT name
FROM User,
((SELECT uid1 AS uid FROM Poke)
EXCEPT ALL
(SELECT uid2 AS uid FROM Poke))
AST
WHERE User.uid = T.uid;



Scalar subqueries

* A query that returns a single row can be used as a
value in WHERE, SELECT, etc.

* Example: users at the same age as Bart

e SELECT *
FROM User What’s Bart’s age?
WHERE age = (SELECT age
FROM User
WHERE name = 'Bart');

* Runtime error if subquery returns more than one row
* Under what condition will this error never occur?

* What if the subquery returns no rows?

* The answer is treated as a special value NULL, and the
comparison with NULL will fail



IN subqueries

checks if x is in the result of
subquery

* Example: users at the same age as (some) Bart

e SELECT *
FROM User What’s Bart’s age?
WHERE age |\ (SELECT age
FROM User
WHERE name = 'Bart');



EXISTS subqueries

checks if the result of subquery
IS non-empty

* Example: users at the same age as (some) Bart

e SELECT *
FROM User AS u
WHERE (SELECT * FROM User
WHERE name = 'Bart’
AND age = u.age);
* This happens to be a —a subquery
that references tuple variables in surrounding queries



Semantics of subqueries

o SELECT *
FROM User AS
WHERE EXISTS (SELECT * FROM User
WHERE name = 'Bart'
AND age = );

* For each row uin User
* Evaluate the subquery with the value of u.age
* If the result of the subquery is not empty, output u.*

* The DBMS query optimizer may choose to process
the query in an equivalent, but more efficient way
(example?)



Scoping rule of subqueries

* To find out which table a column belongs to
* Start with the immediately surrounding query

* If not found, look in the one surrounding that; repeat if
necessary

e Use table name.column name notation and AS
(renaming) to avoid confusion



User(uid, name, pop)

Another example Croup(gid, name)

* SELECT * FROM User u
WHERE EXISTS
(SELECT * FROM Member m
WHERE uid = u.uid
AND EXISTS
(SELECT * FROM Member
WHERE| uid = u.uid
AND gid <> m.gid));
* Users who join at least two groups



Quantified subqueries

* A quantified subquery can be used syntactically as a
value in a WHERE condition

(for all):

.. WHERE x op ALL(subquery) ...

* True iff for all t in the result of subquery, x op t

(exists):

.. WHERE x op (subquery) ...

* True iff there exists some t in subquery result such that

xopt
= Beware

* In common parlance, “any” and “al
* In SQL, ANY really means “some”

I”

seem to be synonyms



Examples of quantified subqueries

User(uid, name, pop)
Member(uid, gid)

. . ?
Which users are the most popular: Group(gid, name)

e SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

e SELECT *
FROM User
WHERE NOT
(pop < (SELECT pop FROM User);

® Use NOT to negate a condition



More ways to get the most popular

User(uid, name, pop)
Member(uid, gid)

. . ?
Which users are the most popular: Group(gid, name)

e SELECT *
FROM User AS u
WHERE NOT
(SELECT * FROM User
WHERE pop > u.pop);

e SELECT * FROM User
WHERE uid
(SELECT ul.uid
FROM User AS ul, User AS u2
WHERE ul.pop < u2.pop);



SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Subqueries

* Subqueries allow queries to be written in more
declarative ways (recall the “most popular” query)
* Butin many cases they don’t add expressive power

* Try translating other forms of subqueries into [NOT] EXISTS,
which in turn can be translated into join (and difference)

* Watch out for number of duplicates though

® Next: aggregation and grouping



Aggregates

* Standard SQL aggregate functions: ,

) )

* Example: number of users under 18, and their
average popularity
* SELECT ,

FROM User
WHERE age < 18;

 COUNT(*) counts the number of rows



Aggregates with DISTINCT

* Example: How many users are in some group?

* SELECT COUNT( uid)
FROM Member;
is equivalent to:

e SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);



Grouping

* SELECT ... FROM ... WHERE ...

’

* Example: compute average popularity for
each age group

e SELECT age, AVG(pop)
FROM User
GROUP BY age;



Semantics of GROUP BY

* Compute FROM (X)
* Compute WHERE (o)

* Compute GROUP BY: group rows according to the
values of GROUP BY columns

» Compute SELECT for each group ()
* For aggregation functions with DISTINCT inputs, first
eliminate duplicates within the group

“ Number of groups =
number of rows in the final output



Example of computing GROUP BY

SELECT age, AVG(pop) FROM User GROUP BY age;

Compute GROUP BY: group

142 Bart .
857  Lisa R rows according to the values
123 Milhouse 10 0.2 of GROUP BY columns
» Bart
Compute SELECT 123 Milhouse 10 02
for each group 857 Lisa 8 07
456 Ralph 8 0.3
o Lo o \

0.55
8 0.50

36



37

Aggregates with no GROUP BY

* An aggregate query with no GROUP BY clause =
all rows go into one group

SELECT AVG(pop) FROM User;

Group all rows
into one group

Aggregate over
the whole group

0.7 » 857

142
857
123
456

Bart
Lisa

Milhouse

Ralph

8
10

0.2
0.3

123
456

Bart
Lisa 8 0.7 » 0.525
Milhouse 10 0.2

Ralph 8 0.3



Restriction on SELECT

* If a query uses aggregation/group by, then every
column referenced in SELECT must be either

* Aggregated, or
* A GROUP BY column
Why?

® This restriction ensures that any SELECT expression
produces only one value for each group



Examples of invalid queries

ONG!
+ SELECT uid, Yge

FROM User GROUP BY age;
* Recall there is one output row per group
* There can be muc_l"ﬂiple uid values per group

NG!
« SELECT uid, Wi&X(pop) FROM User:

* Recall there is only one group for an aggregate query
with no GROUP BY clause

* There can be multiple uid values

* Wishful thinking (that the output uid value is the one
associated with the highest popularity) does NOT work

“ Another way of writing the “most popular’” query?



HAVING

* Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

 SELECT ... FROM ... WHERE ... GROUP BY ...
« Compute FROM (%)
* Compute WHERE (o)

* Compute GROUP BY: group rows according to the values
of GROUP BY columns

» Compute HAVING (another g over the groups)
» Compute SELECT (1) for each group that passes HAVING



HAVING examples

* List the average popularity for each age group with
more than a hundred users

e SELECT age, AVG(pop)
FROM User
GROUP BY age
COUNT(*) > 100;

* Can be written using WHERE and table subqueries

* Find average popularity for each age group over 10

e SELECT age, AVG(pop)
FROM User
GROUP BY age
age > 10;

* Can be written using WHERE without table subqueries



SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations
* Subqueries

* Aggregation and grouping
* More expressive power than relational algebra

® Next: ordering output rows



ORDER BY

* SELECT [DISTINCT] ...
FROM ... WHERE ... GROUP BY ... HAVING ...

* ASC = ascending, DESC = descending

* Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out, sort the output according to ORDER BY
specification



ORDER BY example

* List all users, sort them by popularity (descending)
and name (ascending)

e SELECT uid, name, age, pop
FROM User

* ASCis the default option

* Strictly speaking, only output columns can appear in
ORDER BY clause (although some DBMS support more)

* Can use sequence numbers instead of names to refer to
output columns: ;



SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Subqueries

* Aggregation and grouping

* Ordering

® Next: NULL’s, outerjoins, data modification,
constraints, ...



Additional Example
on SQL evaluation



Find age of the youngest sailor with age >= 18, for each rating with
at least 2 such sailors.

Sailors instance:

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S sid [sname |rating | age
WHERE S.age >=18 22 |dustin | 7 |45.0

GROUP BY S.rating
HAVING COUNT (*) > 1 29 | brutus 1 [33.0
31 |lubber 8 |555

32 |andy 8 |[25.5
58 |rusty 10 [ 35.0
64 |horatio 7 135.0

rating | minage 71 | zorba 10 [16.0

Answer relation: 3 |25.5 74 |horatio 9 [35.0
7 135.0 85 |art 3 |255

8 25.5 95 | bob 3 [63.5

96 | frodo 3 255




Find age of the youngest sailor with age >= 18, for each rating with"

at least 2 such sailors.

Step 1: Form the cross product: FROM clause

(some attributes are omitted for simplicity)

rating | age
7 145.0
1 133.0
8 |55.5
8 [25.5
10 [35.0
7 135.0
10 [16.0
9 |35.0
3 |255
3 |63.5
3 |255

Duke CS, Fall 2017

CompSci 516: Database Systems

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >=18
GROUP BY S.rating
HAVING COUNT (*) > 1




Find age of the youngest sailor with age >= 18, for each rating with

at least 2 such sailors.

Step 2: Apply WHERE clause

rating | age
7 145.0
1 133.0
8 |55.5
8 [25.5
10 [35.0
7 135.0
10 [16.0
9 |35.0
3 |255
3 |63.5
3 |255

rating | age
7 |45.0
1 (33.0
8 |55.5
8 |25.5
10 | 35.0
7 |35.0
10-116.0
9 |35.0
3 |255
3 |635
3 |255

SELECT S.rating, MIN
(S.age) AS minage

FROM &Sailors S
WHERE S.age >=18
GROUP BY S.rating
HAVING COUNT (*)>1




Find age of the youngest sailor with age >= 18, for each rating with

at least 2 such sailors.

Step 3: Apply GROUP BY according to the listed attributes

rating | age
7 145.0
1 133.0
8 |55.5
8 [25.5
10 [35.0
7 135.0
10 [16.0
9 |35.0
3 |255
3 |63.5
3 |255

rating | age
7 |45.0
1 (33.0
8 |55.5
8 |25.5
10 | 35.0
7 |35.0
10 |16.0
9 |35.0
3 |255
3 |635
3 |255

rating

age

SELECT S.rating, MIN
(S.age) AS minage

FROM GSailors S

WHERE S.age >=18
GROUP BY S.rating
HAVING COUNT (*) >1

1

33.0

25.5
63.5
25.5

<

45.0
35.0

95.5
25.5

O© 0 O N NjwWw w w

35.0

.Y
o

35.0




Find age of the youngest sailor with age >= 18, for each rating with

at least 2 such sailors.
Step 4: Apply HAVING clause

is applied to eliminate some groups

The

rating | age
7 145.0
1 133.0
8 |55.5
8 255
10 {35.0
7 135.0
10 {16.0
9 |35.0
3 |255
3 |63.5
3 |255

rating | age
7 |45.0
1 (33.0
8 |55.5
8 |25.5
10 | 35.0
7 |35.0
10 |16.0
9 |35.0
3 |255
3 |635
3 |255

rating

age

1

33.0

SELECT S.rating, MIN
(S.age) AS minage
FROM GSailors S
WHERE S.age >=18
GROUP BY S.rating
HAVING COUNT (*) >
1

25.5
63.5
25.5

<

45.0
35.0

95.5
25.5

O 00 0O N N|W W W|H

35.0

A
(@>)

35.0




Find age of the youngest sailor with age >= 18, for each rating with

at least 2 such sailors.
Step 5: Apply SELECT clause

Apply the aggregate operator
At the end, one tuple per group

rating | age
7 145.0
1 133.0
8 |55.5
8 [25.5
10 [35.0
7 135.0
10 [16.0
9 |35.0
3 |255
3 |63.5
3 |255

rating | age
7 |45.0
1 (33.0
8 |55.5
8 |25.5
10 | 35.0
7 |35.0
10 |16.0
9 |35.0
3 |255
3 |635
3 |255

SELECT S.rating, MIN
(S.age) AS minage
FROM &Sailors S
WHERE S.age >=18
GROUP BY S.rating

<

rating|age | HAVING COUNT (*) > 1
1—133.0

3 [255 ]

3 [635

3 255 _ _

7 1450 rating | minage
7 1350 | ==\ 3 [25.5
8 |555 7 135.0
8 |o5c 8 |25.5
9—35.0

16—{35.0




