SQL: Part I

Introduction to Databases CompSci 316 Spring 2019

Announcements (Tue. Jan. 29)

- Homework #1 due next week 11:59pm
 - Problem 5 and extra credit problems posted
- Google cloud credit instructions emailed
 - Redeem soon! Use @duke.edu email
- Project mixer next Tuesday in class (first half, 2nd half regular lecture)
 - Presentation by Elliott Bolzan (your UTA) about their project in the last semester – do not miss it!
 - You will get an idea how much work and what output is expected
 - Please let me know by next Monday if you want to make a pitch in front of the class (to recruit teammates)!

SQL

- SQL: Structured Query Language
 - Pronounced "S-Q-L" or "sequel"
 - The standard query language supported by most DBMS
- A brief history
 - IBM System R
 - ANSI SQL89
 - ANSI SQL92 (SQL2)
 - ANSI SQL99 (SQL3)
 - ANSI SQL 2003 (added OLAP, XML, etc.)
 - ANSI SQL 2006 (added more XML)
 - ANSI SQL 2008, ...

Creating and dropping tables

- CREATE TABLE table_name (..., column_name column_type, ...);
- DROP TABLE table_name;
- Examples

Basic queries: SFW statement

- SELECT A_1 , A_2 , ..., A_n FROM R_1 , R_2 , ..., R_m WHERE condition;
- Also called an SPJ (select-project-join) query
- Corresponds to (but not really equivalent to) relational algebra query:

$$\pi_{A_1,A_2,...,A_n} (\sigma_{condition}(R_1 \times R_2 \times \cdots \times R_m))$$

Example: reading a table

- SELECT * FROM User;
 - Single-table query, so no cross product here
 - WHERE clause is optional
 - * is a short hand for "all columns"

Example: selection and projection

- Name of users under 18
 - SELECT name FROM User WHERE age<18;
- When was Lisa born?
 - SELECT 2019-age
 FROM User
 WHERE name = 'Lisa';
 - SELECT list can contain expressions
 - Can also use built-in functions such as SUBSTR, ABS, etc.
 - String literals (case sensitive) are enclosed in single quotes

Example: join

- ID's and names of groups with a user whose name contains "Simpson"
 - SELECT Group.gid, Group.name
 FROM User, Member, Group
 WHERE User.uid = Member.uid
 AND Member.gid = Group.gid
 AND User.name LIKE '%Simpson%';
 - LIKE matches a string against a pattern
 - % matches any sequence of zero or more characters
 - Okay to omit table_name in table_name.column_name if column_name is unique

Example: rename

- ID's of all pairs of users that belong to one group
 - Relational algebra query:

```
\pi_{m_1.uid,m_2.uid} \\ \left(\rho_{m_1} Member \bowtie_{m_1.gid=m_2.gid \land m_1.uid>m_2.uid} \rho_{m_2} Member\right)
```

SQL:
 SELECT m1.uid AS uid1, m2.uid AS uid2
 FROM Member AS m1, Member AS m2
 WHERE m1.gid = m2.gid
 AND m1.uid > m2.uid;

AS keyword is completely optional

A more complicated example

Names of all groups that Lisa and Ralph are both in

```
SELECT g.name
FROM User u1, User u2, Member m1, Member m2, Group g
WHERE u1.name = 'Lisa' AND u2.name = 'Ralph'
AND u1.uid = m1.uid AND u2.uid = m2.uid
AND m1.gid = g.gid AND m2.gid = g.gid;
```

Tip: Write the FROM clause first, then WHERE, and then SELECT

Why SFW statements?

- Out of many possible ways of structuring SQL statements, why did the designers choose SELECT-FROM-WHERE?
 - A large number of queries can be written using only selection, projection, and cross product (or join)
 - Any query that uses only these operators can be written in a canonical form: $\pi_L\left(\sigma_p(R_1\times\cdots\times R_m)\right)$
 - Example: $\pi_{R.A,S.B}(R \bowtie_{p_1} S) \bowtie_{p_2} (\pi_{T.C}\sigma_{p_3}T)$ = $\pi_{R.A,S.B,T.C}\sigma_{p_1 \land p_2 \land p_3}(R \times S \times T)$
 - SELECT-FROM-WHERE captures this canonical form

Set versus bag semantics

- Set
 - No duplicates
 - Relational model and algebra use set semantics
- Bag
 - Duplicates allowed
 - Number of duplicates is significant
 - SQL uses bag semantics by default

Set versus bag example

User(uid, name, pop) Member(uid, gid) Group(gid, name)

Member

uid	gid
142	dps
123	gov
857	abc
857	gov
456	abc
456	gov

 π_{gid} Member

gov

gid

dps

abc

...

SELECT gid FROM Member;

dps gov abc

gid

gov

abc

gov

...

A case for bag semantics

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

- Efficiency
 - Saves time of eliminating duplicates
- Which one is more useful?
 - $\pi_{age}User$
 - SELECT age FROM User;
 - The first query just returns all possible user ages
 - The second query returns the user age distribution
- Besides, SQL provides the option of set semantics with DISTINCT keyword

Forcing set semantics

- ID's of all pairs of users that belong to one group
 - SELECT m1.uid AS uid1, m2.uid AS uid2 FROM Member AS m1, Member AS m2 WHERE m1.gid = m2.gid AND m1.uid > m2.uid;
 - Say Lisa and Ralph are in both the book club and the student government
 - SELECT DISTINCT m1.uid AS uid1, m2.uid AS uid2 ...
 - With DISTINCT, all duplicate (uid1, uid2) pairs are removed from the output

Semantics of SFW

- SELECT [DISTINCT] $E_1, E_2, ..., E_n$ FROM $R_1, R_2, ..., R_m$ WHERE condition;
- For each t_1 in R_1 :
 For each t_2 in R_2 : ...
 For each t_m in R_m :
 If condition is true over $t_1, t_2, ..., t_m$:
 Compute and output $E_1, E_2, ..., E_n$ as a row If DISTINCT is present Eliminate duplicate rows in output
- $t_1, t_2, ..., t_m$ are often called tuple variables

SQL set and bag operations

- UNION, EXCEPT, INTERSECT
 - Set semantics
 - Duplicates in input tables, if any, are first eliminated
 - Duplicates in result are also eliminated (for UNION)
 - Exactly like set \cup , -, and \cap in relational algebra
- UNION ALL, EXCEPT ALL, INTERSECT ALL
 - Bag semantics
 - Think of each row as having an implicit count (the number of times it appears in the table)
 - Bag union: sum up the counts from two tables
 - Bag difference: proper-subtract the two counts
 - Bag intersection: take the minimum of the two counts

Examples of bag operations

Bag1	Bag2	
fruit	fruit	
apple	apple	
apple	orange	
orange	orange	

(SELECT * FROM Bag1)
UNION ALL
(SELECT * FROM Bag2);

fruit
apple
apple
orange
apple
orange
orange

(SELECT * FROM Bag1)

EXCEPT ALL
(SELECT * FROM Bag2);

fruit

apple

(SELECT * FROM Bag1)
INTERSECT ALL
(SELECT * FROM Bag2);

fruit
apple

orange

Examples of set versus bag operations

Poke (uid1, uid2, timestamp)

(SELECT uid1 FROM Poke)

EXCEPT

(SELECT uid2 FROM Poke);

- Users who poked others but never got poked by others
- (SELECT uid1 FROM Poke)

EXCEPT ALL

(SELECT uid2 FROM Poke);

Users who poked others more than others poke them

SQL features covered so far

- SELECT-FROM-WHERE statements (select-projectjoin queries)
- Set and bag operations

Next: how to nest SQL queries

Table subqueries

- Use query result as a table
 - In set and bag operations, FROM clauses, etc.
 - A way to "nest" queries
- Example: names of users who poked others more than others poked them

Scalar subqueries

- A query that returns a single row can be used as a value in WHERE, SELECT, etc.
- Example: users at the same age as Bart

- Runtime error if subquery returns more than one row
 - Under what condition will this error never occur?
- What if the subquery returns no rows?
 - The answer is treated as a special value NULL, and the comparison with NULL will fail

IN subqueries

- x IN (subquery) checks if x is in the result of subquery
- Example: users at the same age as (some) Bart

EXISTS subqueries

- EXISTS (*subquery*) checks if the result of *subquery* is non-empty
- Example: users at the same age as (some) Bart
 - SELECT *
 FROM User AS u
 WHERE EXISTS (SELECT * FROM User
 WHERE name = 'Bart'
 AND age = u.age);
 - This happens to be a correlated subquery—a subquery that references tuple variables in surrounding queries

Semantics of subqueries

```
    SELECT *
        FROM User AS u
        WHERE EXISTS (SELECT * FROM User
            WHERE name = 'Bart'
            AND age = u.age);
```

- For each row u in User
 - Evaluate the subquery with the value of u.age
 - If the result of the subquery is not empty, output u.*
- The DBMS query optimizer may choose to process the query in an equivalent, but more efficient way (example?)

Scoping rule of subqueries

- To find out which table a column belongs to
 - Start with the immediately surrounding query
 - If not found, look in the one surrounding that; repeat if necessary
- Use table_name.column_name notation and AS (renaming) to avoid confusion

Another example

User(uid, name, pop) Member(uid, gid) Group(gid, name)

```
• SELECT * FROM User u
WHERE EXISTS
(SELECT * FROM Member m
WHERE uid = u.uid
AND EXISTS
(SELECT * FROM Member
WHERE uid = u.uid
AND gid <> m.gid));
```

Users who join at least two groups

Quantified subqueries

- A quantified subquery can be used syntactically as a value in a WHERE condition
- Universal quantification (for all):
 - ... WHERE x op ALL(subquery) ...
 - True iff for all t in the result of subquery, x op t
- Existential quantification (exists):
 - ... WHERE x op ANY(subquery) ...
 - True iff there exists some t in subquery result such that $x\ op\ t$
 - Beware
 - In common parlance, "any" and "all" seem to be synonyms
 - In SQL, ANY really means "some"

Examples of quantified subqueries

Which users are the most popular?

User(uid, name, pop) Member(uid, gid) Group(gid, name)

```
    SELECT *
        FROM User
        WHERE pop >= ALL(SELECT pop FROM User);
```

```
    SELECT *
        FROM User
        WHERE NOT
        (pop < ANY(SELECT pop FROM User);</li>
    Use NOT to negate a condition
```

More ways to get the most popular

Which users are the most popular?

User(uid, name, pop) Member(uid, gid) Group(gid, name)

- SELECT *
 FROM User AS u
 WHERE NOT EXISTS
 (SELECT * FROM User
 WHERE pop > u.pop);
- SELECT * FROM User
 WHERE uid NOT IN
 (SELECT u1.uid
 FROM User AS u1, User AS u2
 WHERE u1.pop < u2.pop);

SQL features covered so far

- SELECT-FROM-WHERE statements
- Set and bag operations
- Subqueries
 - Subqueries allow queries to be written in more declarative ways (recall the "most popular" query)
 - But in many cases they don't add expressive power
 - Try translating other forms of subqueries into [NOT] EXISTS, which in turn can be translated into join (and difference)
 - Watch out for number of duplicates though

Next: aggregation and grouping

Aggregates

- Standard SQL aggregate functions: COUNT, SUM, AVG, MIN, MAX
- Example: number of users under 18, and their average popularity
 - SELECT COUNT(*), AVG(pop)
 FROM User
 WHERE age < 18;
 - COUNT(*) counts the number of rows

Aggregates with DISTINCT

- Example: How many users are in some group?
 - SELECT COUNT(DISTINCT uid) FROM Member;

is equivalent to:

SELECT COUNT(*)
 FROM (SELECT DISTINCT uid FROM Member);

Grouping

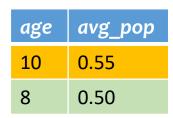
• SELECT ... FROM ... WHERE ... GROUP BY *list of columns*;

- Example: compute average popularity for each age group
 - SELECT age, AVG(pop)
 FROM User
 GROUP BY age;

Semantics of GROUP BY

SELECT ... FROM ... WHERE ... GROUP BY ...;

- Compute FROM (×)
- Compute WHERE (σ)
- Compute GROUP BY: group rows according to the values of GROUP BY columns
- Compute SELECT for each group (π)
 - For aggregation functions with DISTINCT inputs, first eliminate duplicates within the group
- Number of groups = number of rows in the final output


Example of computing GROUP BY

SELECT age, AVG(pop) FROM User GROUP BY age;

uid	name	age	рор
142	Bart	10	0.9
857	Lisa	8	0.7
123	Milhouse	10	0.2
456	Ralph	8	0.3

Compute GROUP BY: group rows according to the values of GROUP BY columns

Compute SELECT for each group

uid	name	age	рор
142	Bart	10	0.9
123	Milhouse	10	0.2
857	Lisa	8	0.7
456	Ralph	8	0.3

Aggregates with no GROUP BY

 An aggregate query with no GROUP BY clause = all rows go into one group
 SELECT AVG(pop) FROM User;

Group all rows into one group

Aggregate over the whole group

uid	name	age	рор
142	Bart	10	0.9
857	Lisa	8	0.7
123	Milhouse	10	0.2
456	Ralph	8	0.3

uid	name	age	рор	
142	Bart	10	0.9	avg_pop
857	Lisa	8	0.7	0.525
123	Milhouse	10	0.2	
456	Ralph	8	0.3	

Restriction on SELECT

- If a query uses aggregation/group by, then every column referenced in SELECT must be either
 - Aggregated, or
 - A GROUP BY column

Why?

This restriction ensures that any SELECT expression produces only one value for each group

Examples of invalid queries

- SELECT uid, age FROM User GROUP BY age;
 - Recall there is one output row per group
 - There can be multiple *uid* values per group
- SELECT uid, WAX(pop) FROM User;
 - Recall there is only one group for an aggregate query with no GROUP BY clause
 - There can be multiple uid values
 - Wishful thinking (that the output *uid* value is the one associated with the highest popularity) does NOT work
 - Another way of writing the "most popular" query?

HAVING

- Used to filter groups based on the group properties (e.g., aggregate values, GROUP BY column values)
- SELECT ... FROM ... WHERE ... GROUP BY ... HAVING condition;
 - Compute FROM (×)
 - Compute WHERE (σ)
 - Compute GROUP BY: group rows according to the values of GROUP BY columns
 - Compute HAVING (another σ over the groups)
 - Compute SELECT (π) for each group that passes HAVING

HAVING examples

- List the average popularity for each age group with more than a hundred users
 - SELECT age, AVG(pop)
 FROM User
 GROUP BY age
 HAVING COUNT(*) > 100;
 - Can be written using WHERE and table subqueries
- Find average popularity for each age group over 10
 - SELECT age, AVG(pop)
 FROM User
 GROUP BY age
 HAVING age > 10;
 - Can be written using WHERE without table subqueries

SQL features covered so far

- SELECT-FROM-WHERE statements
- Set and bag operations
- Subqueries
- Aggregation and grouping
 - More expressive power than relational algebra

Next: ordering output rows

ORDER BY

- SELECT [DISTINCT] ...
 FROM ... WHERE ... GROUP BY ... HAVING ...
 ORDER BY output_column [ASC | DESC], ...;
- ASC = ascending, DESC = descending
- Semantics: After SELECT list has been computed and optional duplicate elimination has been carried out, sort the output according to ORDER BY specification

ORDER BY example

- List all users, sort them by popularity (descending) and name (ascending)
 - SELECT uid, name, age, pop FROM User
 ORDER BY pop DESC, name;
 - ASC is the default option
 - Strictly speaking, only output columns can appear in ORDER BY clause (although some DBMS support more)
 - Can use sequence numbers instead of names to refer to output columns: ORDER BY 4 DESC, 2;

SQL features covered so far

- SELECT-FROM-WHERE statements
- Set and bag operations
- Subqueries
- Aggregation and grouping
- Ordering

Next: NULL's, outerjoins, data modification, constraints, ...

Additional Example on SQL evaluation

Find age of the youngest sailor with age >= 18, for each rating with at least 2 such sailors.

SELECT S.rating, MIN (S.age) AS minage FROM Sailors S WHERE S.age >= 18 GROUP BY S.rating HAVING COUNT (*) > 1

Answer relation:

rating	minage
3	25.5
7	35.0
8	25.5

Sailors instance:

sid	sname	rating	age
22	dustin	7	45.0
29	brutus	1	33.0
31	lubber	8	55.5
32	andy	8	25.5
58	rusty	10	35.0
64	horatio	7	35.0
71	zorba	10	16.0
74	horatio	9	35.0
85	art	3	25.5
95	bob	3	63.5
96	frodo	3	25.5

Find age of the youngest sailor with age >= 18, for each rating with at least 2 such sailors.

SELECT S.rating, MIN

Step 1: Form the cross product: FROM clause (some attributes are omitted for simplicity)

rating	age
7	45.0
1	33.0
8	55.5
8	25.5
10	35.0
7	35.0
10	16.0
9	35.0
3	25.5
3	63.5
3	25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Find age of the youngest sailor with age >= 18, for each rating with at least 2 such sailors.

SELECT S.rating, MIN

Step 2: Apply WHERE clause

rating	age		rating	age	
7	45.0		7	45.0	
1	33.0		1	33.0	
8	55.5		8	55.5	
8	25.5		8	25.5	
10	35.0		10	35.0	
7	35.0		7	35.0	
10	16.0	-	10	16.0	
9	35.0		9	35.0	
3	25.5		3	25.5	
3	63.5		3	63.5	
3	25.5		3	25.5	

SELECT S.rating, MIN (S.age) AS minage FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating HAVING COUNT (*) > 1

Find age of the youngest sailor with age >= 18, for each rating with

at least 2 such sailors.

Step 3: Apply GROUP BY according to the listed attributes

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

•					1			G
rating	age		rating	age		rating	age	Н
7	45.0		7	45.0		1	33.0	
1	33.0		1	33.0				
8	55.5		8	55.5		3	25.5	
8	25.5					3	63.5	
			8	25.5		3	25.5	
10	35.0		10	35.0		7	45.0	
7	35.0	<i>V</i>	7	35.0	V			
10	16.0		10	16.0		7	35.0	
9	35.0		9	35.0		8	55.5	
3	25.5					8	25.5	
			3	25.5		9	35.0	
3	63.5		3	63.5				
3	25.5		3	25.5		10	35.0	
								1

Duke CS, Fall 2017

CompSci 516: Database Systems

Find age of the youngest sailor with age >= 18, for each rating with

at least 2 such sailors.

Step 4: Apply HAVING clause

The group-qualification is applied to eliminate some groups

rating	age	
7	45.0	
1	33.0	
8	55.5	
8	25.5	
10	35.0	
7	35.0	
10	16.0	
9	35.0	
3	25.5	
3	63.5	
3	25.5	

			•		
	rating	age		rating	age
	7	45.0		1	33.0
	1	33.0		3	25.5
	8	55.5		3	63.5
	8	25.5	,	3	25.5
>	10	35.0			
	7	35.0	V	7	45.0
	10	16.0		7	35.0
	9	35.0		8	55.5
	3	25.5		8	25.5
	3	63.5		9	35.0
	3	25.5		10	35.0
			'		

SELECT S.rating, MIN (S.age) AS minage FROM Sailors S WHERE S.age \geq 18 GROUP BY S.rating HAVING COUNT (*) > Find age of the youngest sailor with age >= 18, for each rating with

at least 2 such sailors.

Step 5: Apply SELECT clause

Apply the aggregate operator At the end, one tuple per group

rating	age	
7	45.0	
1	33.0	
8	55.5	
8	25.5	
10	35.0	
7	35.0	
10	16.0	
9	35.0	
3	25.5	
3	63.5	
3	25.5	

	rating	age	
	7	45.0	
	1	33.0	
	8	55.5	
	8	25.5	
>	10	35.0	
	7	35.0	
	10	16.0	
	9	35.0	
	3	25.5	
	3	63.5	
	3	25.5	

				GI
		rating	age	Н
		1	33.0	
		3	25.5	
		3	63.5	
\		3	25.5	
→	>	7	45.0	
_		7	35.0	
		8	55.5	
_		8	25.5	
		9	35.0	
		10	35.0	

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

rating	minage
3	25.5
7	35.0
8	25.5

Duke CS, Fall 2017

CompSci 516: Database Systems