
SQL: Part I
Introduction to Databases

CompSci 316 Spring 2019

Announcements (Tue. Jan. 29)

• Homework #1 due next week 11:59pm
• Problem 5 and extra credit problems posted

• Google cloud credit instructions emailed
• Redeem soon! Use @duke.edu email

• Project mixer next Tuesday in class (first half, 2nd

half regular lecture)
• Presentation by Elliott Bolzan (your UTA) about their

project in the last semester – do not miss it!
• You will get an idea how much work and what output is

expected

• Please let me know by next Monday if you want to make
a pitch in front of the class (to recruit teammates)!

2

SQL

• SQL: Structured Query Language
• Pronounced “S-Q-L” or “sequel”

• The standard query language supported by most DBMS

• A brief history
• IBM System R

• ANSI SQL89

• ANSI SQL92 (SQL2)

• ANSI SQL99 (SQL3)

• ANSI SQL 2003 (added OLAP, XML, etc.)

• ANSI SQL 2006 (added more XML)

• ANSI SQL 2008, …

3

Creating and dropping tables

• CREATE TABLE table_name
(…, column_name column_type, …);

• DROP TABLE table_name;

• Examples
create table User(uid integer, name varchar(30),

age integer, pop float);

create table Group(gid char(10), name varchar(100));

create table Member(uid integer, gid char(10));

drop table Member;

drop table Group;

drop table User;

-- everything from -- to the end of line is ignored.

-- SQL is insensitive to white space.

-- SQL is insensitive to case (e.g., ...Group... is

-- equivalent to ...GROUP...).

4

Basic queries: SFW statement

• SELECT 𝐴1, 𝐴2, …, 𝐴𝑛
FROM 𝑅1, 𝑅2, …, 𝑅𝑚
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

• Also called an SPJ (select-project-join) query

• Corresponds to (but not really equivalent to)
relational algebra query:

𝜋𝐴1,𝐴2,…,𝐴𝑛 𝜎𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑅1 × 𝑅2 ×⋯× 𝑅𝑚

5

Example: reading a table

• SELECT * FROM User;
• Single-table query, so no cross product here

• WHERE clause is optional

• * is a short hand for “all columns”

6

Example: selection and projection

• Name of users under 18
• SELECT name FROM User WHERE age<18;

• When was Lisa born?
• SELECT 2019-age

FROM User
WHERE name = 'Lisa';

• SELECT list can contain expressions
• Can also use built-in functions such as SUBSTR, ABS, etc.

• String literals (case sensitive) are enclosed in single
quotes

7

Example: join

• ID’s and names of groups with a user whose name
contains “Simpson”
• SELECT Group.gid, Group.name

FROM User, Member, Group
WHERE User.uid = Member.uid
AND Member.gid = Group.gid
AND User.name LIKE '%Simpson%';

• LIKE matches a string against a pattern
• % matches any sequence of zero or more characters

• Okay to omit table_name in table_name.column_name if
column_name is unique

8

Example: rename

• ID’s of all pairs of users that belong to one group
• Relational algebra query:
𝜋𝑚1.𝑢𝑖𝑑,𝑚2.𝑢𝑖𝑑

𝜌𝑚1
𝑀𝑒𝑚𝑏𝑒𝑟 ⋈𝑚1.𝑔𝑖𝑑=𝑚2.𝑔𝑖𝑑 ∧𝑚1.𝑢𝑖𝑑>𝑚2.𝑢𝑖𝑑 𝜌𝑚2

𝑀𝑒𝑚𝑏𝑒𝑟

• SQL:
SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid
AND m1.uid > m2.uid;

• AS keyword is completely optional

9

A more complicated example

• Names of all groups that Lisa and Ralph are both in

SELECT g.name

FROM User u1, User u2, Member m1, Member m2, Group g

WHERE u1.name = 'Lisa' AND u2.name = 'Ralph'

AND u1.uid = m1.uid AND u2.uid = m2.uid

AND m1.gid = g.gid AND m2.gid = g.gid;

Tip: Write the FROM clause first, then WHERE, and
then SELECT

10

Why SFW statements?

• Out of many possible ways of structuring SQL
statements, why did the designers choose SELECT-
FROM-WHERE?
• A large number of queries can be written using only

selection, projection, and cross product (or join)

• Any query that uses only these operators can be written

in a canonical form: 𝜋𝐿 𝜎𝑝 𝑅1 ×⋯× 𝑅𝑚

• Example: 𝜋𝑅.𝐴,𝑆.𝐵 𝑅 ⋈𝑝1 𝑆 ⋈𝑝2 𝜋𝑇.𝐶𝜎𝑝3𝑇
= 𝜋𝑅.𝐴,𝑆.𝐵,𝑇.𝐶𝜎𝑝1∧𝑝2∧𝑝3 𝑅 × 𝑆 × 𝑇

• SELECT-FROM-WHERE captures this canonical form

11

Set versus bag semantics

• Set
• No duplicates

• Relational model and algebra use set semantics

• Bag
• Duplicates allowed

• Number of duplicates is significant

• SQL uses bag semantics by default

12

Set versus bag example
13

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

Member

gid

dps

gov

abc

gov

abc

gov

…

gid

dps

gov

abc

…

𝜋𝑔𝑖𝑑𝑀𝑒𝑚𝑏𝑒𝑟

SELECT gid
FROM Member;

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

A case for bag semantics

• Efficiency
• Saves time of eliminating duplicates

• Which one is more useful?
• 𝜋𝑎𝑔𝑒𝑈𝑠𝑒𝑟

• SELECT age FROM User;

• The first query just returns all possible user ages

• The second query returns the user age distribution

• Besides, SQL provides the option of set semantics
with DISTINCT keyword

14User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

Forcing set semantics

• ID’s of all pairs of users that belong to one group
• SELECT m1.uid AS uid1, m2.uid AS uid2

FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid
AND m1.uid > m2.uid;
• Say Lisa and Ralph are in both the book club and the student

government

• SELECT DISTINCT m1.uid AS uid1, m2.uid AS uid2 …
• With DISTINCT, all duplicate (uid1, uid2) pairs are removed from

the output

15User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

Semantics of SFW

• SELECT [DISTINCT] 𝐸1, 𝐸2, …, 𝐸𝑛
FROM 𝑅1, 𝑅2, …, 𝑅𝑚
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

• For each 𝑡1 in 𝑅1:
For each 𝑡2 in 𝑅2: … …

For each 𝑡𝑚 in 𝑅𝑚:
If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true over 𝑡1, 𝑡2, …, 𝑡𝑚:

Compute and output 𝐸1, 𝐸2, …, 𝐸𝑛 as a row
If DISTINCT is present

Eliminate duplicate rows in output

• 𝑡1, 𝑡2, …, 𝑡𝑚 are often called tuple variables

16

SQL set and bag operations

• UNION, EXCEPT, INTERSECT
• Set semantics

• Duplicates in input tables, if any, are first eliminated

• Duplicates in result are also eliminated (for UNION)

• Exactly like set ∪, −, and ∩ in relational algebra

• UNION ALL, EXCEPT ALL, INTERSECT ALL
• Bag semantics

• Think of each row as having an implicit count (the
number of times it appears in the table)

• Bag union: sum up the counts from two tables

• Bag difference: proper-subtract the two counts

• Bag intersection: take the minimum of the two counts

17

Examples of bag operations
18

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
UNION ALL
(SELECT * FROM Bag2);

fruit

apple

apple

orange

apple

orange

orange

(SELECT * FROM Bag1)
EXCEPT ALL
(SELECT * FROM Bag2);

fruit

apple

(SELECT * FROM Bag1)
INTERSECT ALL
(SELECT * FROM Bag2);

fruit

apple

orange

Examples of set versus bag operations

Poke (uid1, uid2, timestamp)

• (SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);
• Users who poked others but never got poked by others

• (SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);
• Users who poked others more than others poke them

19

SQL features covered so far

• SELECT-FROM-WHERE statements (select-project-
join queries)

• Set and bag operations

Next: how to nest SQL queries

20

Table subqueries

• Use query result as a table
• In set and bag operations, FROM clauses, etc.

• A way to “nest” queries

• Example: names of users who poked others more
than others poked them
• SELECT DISTINCT name

FROM User,
((SELECT uid1 AS uid FROM Poke)
EXCEPT ALL
(SELECT uid2 AS uid FROM Poke))
AS T

WHERE User.uid = T.uid;

21

Scalar subqueries

• A query that returns a single row can be used as a
value in WHERE, SELECT, etc.

• Example: users at the same age as Bart
• SELECT *

FROM User
WHERE age = (SELECT age

FROM User
WHERE name = 'Bart');

• Runtime error if subquery returns more than one row
• Under what condition will this error never occur?

• What if the subquery returns no rows?
• The answer is treated as a special value NULL, and the

comparison with NULL will fail

22

What’s Bart’s age?

IN subqueries

• 𝑥 IN (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if 𝑥 is in the result of
𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦

• Example: users at the same age as (some) Bart
• SELECT *

FROM User
WHERE age IN (SELECT age

FROM User
WHERE name = 'Bart');

23

What’s Bart’s age?

EXISTS subqueries

• EXISTS (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
is non-empty

• Example: users at the same age as (some) Bart
• SELECT *

FROM User AS u
WHERE EXISTS (SELECT * FROM User

WHERE name = 'Bart'
AND age = u.age);

• This happens to be a correlated subquery—a subquery
that references tuple variables in surrounding queries

24

Semantics of subqueries

• SELECT *
FROM User AS u
WHERE EXISTS (SELECT * FROM User

WHERE name = 'Bart'
AND age = u.age);

• For each row u in User
• Evaluate the subquery with the value of u.age

• If the result of the subquery is not empty, output u.*

• The DBMS query optimizer may choose to process
the query in an equivalent, but more efficient way
(example?)

25

Scoping rule of subqueries

• To find out which table a column belongs to
• Start with the immediately surrounding query

• If not found, look in the one surrounding that; repeat if
necessary

• Use table_name.column_name notation and AS
(renaming) to avoid confusion

26

• SELECT * FROM User u
WHERE EXISTS

(SELECT * FROM Member m
WHERE uid = u.uid
AND EXISTS

(SELECT * FROM Member
WHERE uid = u.uid
AND gid <> m.gid));

• Users who join at least two groups

Another example
27

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

Quantified subqueries

• A quantified subquery can be used syntactically as a
value in a WHERE condition

• Universal quantification (for all):
… WHERE 𝑥 𝑜𝑝 ALL(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff for all 𝑡 in the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦, 𝑥 𝑜𝑝 𝑡

• Existential quantification (exists):
… WHERE 𝑥 𝑜𝑝 ANY(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff there exists some 𝑡 in 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result such that
𝑥 𝑜𝑝 𝑡

Beware
• In common parlance, “any” and “all” seem to be synonyms

• In SQL, ANY really means “some”

28

Examples of quantified subqueries

• Which users are the most popular?

• SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

• SELECT *
FROM User
WHERE NOT

(pop < ANY(SELECT pop FROM User);

Use NOT to negate a condition

29

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

More ways to get the most popular

• Which users are the most popular?

• SELECT *
FROM User AS u
WHERE NOT EXISTS

(SELECT * FROM User
WHERE pop > u.pop);

• SELECT * FROM User
WHERE uid NOT IN

(SELECT u1.uid
FROM User AS u1, User AS u2
WHERE u1.pop < u2.pop);

30

User(uid, name, pop)
Member(uid, gid)
Group(gid, name)

SQL features covered so far

• SELECT-FROM-WHERE statements

• Set and bag operations

• Subqueries
• Subqueries allow queries to be written in more

declarative ways (recall the “most popular” query)

• But in many cases they don’t add expressive power
• Try translating other forms of subqueries into [NOT] EXISTS,

which in turn can be translated into join (and difference)
• Watch out for number of duplicates though

Next: aggregation and grouping

31

Aggregates

• Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

• Example: number of users under 18, and their
average popularity
• SELECT COUNT(*), AVG(pop)

FROM User
WHERE age < 18;

• COUNT(*) counts the number of rows

32

Aggregates with DISTINCT

• Example: How many users are in some group?

• SELECT COUNT(DISTINCT uid)
FROM Member;

is equivalent to:

• SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

33

Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for
each age group
• SELECT age, AVG(pop)

FROM User
GROUP BY age;

34

Semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;

• Compute FROM (×)

• Compute WHERE (𝜎)

• Compute GROUP BY: group rows according to the
values of GROUP BY columns

• Compute SELECT for each group (𝜋)
• For aggregation functions with DISTINCT inputs, first

eliminate duplicates within the group

Number of groups =
number of rows in the final output

35

Example of computing GROUP BY

SELECT age, AVG(pop) FROM User GROUP BY age;

36

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT
for each group

age avg_pop

10 0.55

8 0.50

Aggregates with no GROUP BY

• An aggregate query with no GROUP BY clause =
all rows go into one group

SELECT AVG(pop) FROM User;

37

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Group all rows
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Aggregate over
the whole group

avg_pop

0.525

Restriction on SELECT

• If a query uses aggregation/group by, then every
column referenced in SELECT must be either
• Aggregated, or

• A GROUP BY column

Why?

This restriction ensures that any SELECT expression
produces only one value for each group

38

Examples of invalid queries

• SELECT uid, age
FROM User GROUP BY age;
• Recall there is one output row per group

• There can be multiple uid values per group

• SELECT uid, MAX(pop) FROM User;
• Recall there is only one group for an aggregate query

with no GROUP BY clause

• There can be multiple uid values

• Wishful thinking (that the output uid value is the one
associated with the highest popularity) does NOT work

Another way of writing the “most popular” query?

39

HAVING

• Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

• SELECT … FROM … WHERE … GROUP BY …
HAVING 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;
• Compute FROM (×)

• Compute WHERE (𝜎)

• Compute GROUP BY: group rows according to the values
of GROUP BY columns

• Compute HAVING (another 𝜎 over the groups)

• Compute SELECT (𝜋) for each group that passes HAVING

40

HAVING examples

• List the average popularity for each age group with
more than a hundred users
• SELECT age, AVG(pop)

FROM User
GROUP BY age
HAVING COUNT(*) > 100;

• Can be written using WHERE and table subqueries

• Find average popularity for each age group over 10
• SELECT age, AVG(pop)

FROM User
GROUP BY age
HAVING age > 10;

• Can be written using WHERE without table subqueries

41

SQL features covered so far

• SELECT-FROM-WHERE statements

• Set and bag operations

• Subqueries

• Aggregation and grouping
• More expressive power than relational algebra

Next: ordering output rows

42

ORDER BY

• SELECT [DISTINCT] …
FROM … WHERE … GROUP BY … HAVING …
ORDER BY output_column [ASC|DESC], …;

• ASC = ascending, DESC = descending

• Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out, sort the output according to ORDER BY
specification

43

ORDER BY example

• List all users, sort them by popularity (descending)
and name (ascending)
• SELECT uid, name, age, pop

FROM User
ORDER BY pop DESC, name;

• ASC is the default option

• Strictly speaking, only output columns can appear in
ORDER BY clause (although some DBMS support more)

• Can use sequence numbers instead of names to refer to
output columns: ORDER BY 4 DESC, 2;

44

SQL features covered so far

• SELECT-FROM-WHERE statements

• Set and bag operations

• Subqueries

• Aggregation and grouping

• Ordering

Next: NULL’s, outerjoins, data modification,
constraints, …

45

Additional Example
on SQL evaluation

46

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Answer relation:

Sailors instance:

rating minage

3 25.5

7 35.0

8 25.5

Duke CS, Fall 2017 CompSci 516: Database Systems

47
Find age of the youngest sailor with age >= 18, for each rating with
at least 2 such sailors.

Find age of the youngest sailor with age >= 18, for each rating with
at least 2 such sailors.

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

Duke CS, Fall 2017 CompSci 516: Database Systems

48

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 1: Form the cross product: FROM clause
(some attributes are omitted for simplicity)

Find age of the youngest sailor with age >= 18, for each rating with
at least 2 such sailors.

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

Duke CS, Fall 2017 CompSci 516: Database Systems

49

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 2: Apply WHERE clause

Find age of the youngest sailor with age >= 18, for each rating with
at least 2 such sailors.

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

Duke CS, Fall 2017 CompSci 516: Database Systems

50

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 3: Apply GROUP BY according to the listed attributes

Find age of the youngest sailor with age >= 18, for each rating with
at least 2 such sailors.

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

Duke CS, Fall 2017 CompSci 516: Database Systems

51

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) >
1

Step 4: Apply HAVING clause
The group-qualification is applied to eliminate some groups

Find age of the youngest sailor with age >= 18, for each rating with
at least 2 such sailors.

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

rating minage

3 25.5

7 35.0

8 25.5

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

Duke CS, Fall 2017 CompSci 516: Database Systems

52

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 5: Apply SELECT clause
Apply the aggregate operator
At the end, one tuple per group

