
SQL: Part II
Introduction to Databases

CompSci 316 Spring 2019



Announcements (Thu., Jan. 31)

• Homework #1 due next Tuesday (Feb 5) 11:59pm
• Extra credit problems due on Feb 8 (Friday) 11:59 pm
• Some bug in RATEST-problem f – same set of beers (to be 

fixed soon) 

• Project mixer next Tuesday in class (first half, 2nd half 
regular lecture)
• Presentation by Elliott Bolzan (your UTA) about their project 

in the last semester – do not miss it!
• You will get an idea how much work and what output is expected

• Please let me know by next Monday if you want to make a 
pitch in front of the class (to recruit teammates)!

• Sudeepa’s office hours Wednesdays 1:30-2:30 pm, LSRC 
D325.

2



Project resources

• Working web dev examples in PHP, Flask, and 
Play/Java for course VM
• See “Help” on course website for more details

• Duke Co-Lab offerings
• Many interesting “Roots” 

courses
• Build Your First iPhone or iPad App, Making Your Website 

Interactive, Intro to React.js, Introduction to Linux, etc.

• Advance registration required

• Office hours on full-stack web/app development

3



Incomplete information

• Example: User (uid, name, age, pop)

• Value unknown
• We do not know Nelson’s age

• Value not applicable
• Suppose pop is based on interactions with others on our 

social networking site

• Nelson is new to our site; what is his pop?

4



Solution 1

• Dedicate a value from each domain (type)
• pop cannot be −1, so use −1 as a special value to 

indicate a missing or invalid pop

• Leads to incorrect answers if not careful
• SELECT AVG(pop) FROM User;

• Complicates applications
• SELECT AVG(pop) FROM User

WHERE pop <> -1;

• Perhaps the value is not 
as special as you think!
• Ever heard of the Y2K bug? 

“00” was used as a 
missing or invalid year value

5

http://www.90s411.com/images/y2k-cartoon.jpg



Solution 2

• A valid-bit for every column
• User (uid, 

name, name_is_valid,
age, age_is_valid,
pop, pop_is_valid)

• Complicates schema and queries
• SELECT AVG(pop) FROM User

WHERE pop_is_valid;

6



Solution 3

• Decompose the table; missing row = missing value
• UserName (uid, name)

UserAge (uid, age)
UserPop (uid, pop)

• UserID (uid)

• Conceptually the cleanest solution

• Still complicates schema and queries
• How to get all information about users in a table?

• Natural join doesn’t work! Why?

7



SQL’s solution

• A special value NULL
• For every domain

• Special rules for dealing with NULL’s

• Example: User (uid, name, age, pop)
• 789, “Nelson”, NULL, NULL

8



Computing with NULL’s

• When we operate on a NULL and another value 
(including another NULL) using +, −, etc., the result 
is NULL

• Aggregate functions ignore NULL, except COUNT(*) 
(since it counts rows)

9



Three-valued logic

• TRUE = 1, FALSE = 0, UNKNOWN = 0.5

• 𝑥 AND 𝑦 = min(𝑥, 𝑦)

• 𝑥 OR 𝑦 = max(𝑥, 𝑦)

• NOT 𝑥 = 1 − 𝑥

• When we compare a NULL with another value 
(including another NULL) using =, >, etc., the result 
is UNKNOWN

• WHERE and HAVING clauses only select rows for 
output if the condition evaluates to TRUE
• UNKNOWN is not enough

10



Unfortunate consequences

• SELECT AVG(pop) FROM User;
SELECT SUM(pop)/COUNT(*) FROM User;
• Not equivalent

• Although AVG(pop)=SUM(pop)/COUNT(pop) still

• SELECT * FROM User;
SELECT * FROM User WHERE pop = pop;
• Not equivalent

Be careful: NULL breaks many equivalences

11



Another problem

• Example: Who has NULL pop values?
• SELECT * FROM User WHERE pop = NULL;

• Does not work; never returns anything

• (SELECT * FROM User)
EXCEPT ALL
(SELECT * FROM User WHERE pop = pop);
• Works, but ugly

• SQL introduced special, built-in predicates 
IS NULL and IS NOT NULL
• SELECT * FROM User WHERE pop IS NULL;

12



Outerjoin motivation

• Example: a master group membership list
• SELECT g.gid, g.name AS gname, 

u.uid, u.name AS uname
FROM Group g, Member m, User u
WHERE g.gid = m.gid AND m.uid = u.uid;

• What if a group is empty?

• It may be reasonable for the master list to include empty 
groups as well
• For these groups, uid and uname columns would be NULL

13



Outerjoin flavors and definitions

• A full outerjoin between R and S (denoted 𝑅༖𝑆) 
includes all rows in the result of 𝑅 ⋈ 𝑆, plus
• “Dangling” 𝑅 rows (those that do not join with any 𝑆

rows) padded with NULL’s for 𝑆’s columns

• “Dangling” 𝑆 rows (those that do not join with any 𝑅
rows) padded with NULL’s for 𝑅’s columns

• A left outerjoin (𝑅༔𝑆) includes rows in 𝑅 ⋈ 𝑆 plus 
dangling 𝑅 rows padded with NULL’s

• A right outerjoin (𝑅༕𝑆) includes rows in 𝑅 ⋈ 𝑆
plus dangling 𝑆 rows padded with NULL’s

14



Outerjoin examples
15

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

nuk United Nuclear Workers

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

nuk United Nuclear Workers NULL

Group༔Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

foo NULL 789

Group༕Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

nuk United Nuclear Workers NULL

foo NULL 789

Group༖Member



Outerjoin syntax

• SELECT * FROM Group LEFT OUTER JOIN Member
ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ༔
𝐺𝑟𝑜𝑢𝑝.𝑔𝑖𝑑=𝑀𝑒𝑚𝑏𝑒𝑟.𝑔𝑖𝑑

𝑀𝑒𝑚𝑏𝑒𝑟

• SELECT * FROM Group RIGHT OUTER JOIN Member
ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ༕
𝐺𝑟𝑜𝑢𝑝.𝑔𝑖𝑑=𝑀𝑒𝑚𝑏𝑒𝑟.𝑔𝑖𝑑

𝑀𝑒𝑚𝑏𝑒𝑟

• SELECT * FROM Group FULL OUTER JOIN Member
ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ༖
𝐺𝑟𝑜𝑢𝑝.𝑔𝑖𝑑=𝑀𝑒𝑚𝑏𝑒𝑟.𝑔𝑖𝑑

𝑀𝑒𝑚𝑏𝑒𝑟

☞A similar construct exists for regular (“inner”) joins:
• SELECT * FROM Group JOIN Member 

ON Group.gid = Member.gid;

☞These are theta joins rather than natural joins
• Return all columns in Group and Member

☞For natural joins, add keyword NATURAL; don’t use ON

16



SQL features covered so far

• SELECT-FROM-WHERE statements

• Set and bag operations

• Table expressions, subqueries

• Aggregation and grouping

• Ordering

• NULL’s and outerjoins

Next: data modification statements, constraints

17



INSERT

• Insert one row

• INSERT INTO Member VALUES (789, 'dps');

• User 789 joins Dead Putting Society

• Insert the result of a query

• INSERT INTO Member

(SELECT uid, 'dps' FROM User

WHERE uid NOT IN (SELECT uid

FROM Member

WHERE gid = 'dps'));

• Everybody joins Dead Putting Society!

18



DELETE

• Delete everything from a table
• DELETE FROM Member;

• Delete according to a WHERE condition

Example: User 789 leaves Dead Putting Society
• DELETE FROM Member

WHERE uid = 789 AND gid = 'dps';

Example: Users under age 18 must be removed 
from United Nuclear Workers
• DELETE FROM Member

WHERE uid IN (SELECT uid FROM User
WHERE age < 18)

AND gid = 'nuk';

19



UPDATE

• Example: User 142 changes name to “Barney”
• UPDATE User

SET name = 'Barney'
WHERE uid = 142;

• Example: We are all popular!
• UPDATE User

SET pop = (SELECT AVG(pop) FROM User);
• But won’t update of every row causes average pop to change?

Subquery is always computed over the old table

20



Constraints

• Restrictions on allowable data in a database
• In addition to the simple structure and type restrictions 

imposed by the table definitions

• Declared as part of the schema

• Enforced by the DBMS

• Why use constraints?
• Protect data integrity (catch errors)

• Tell the DBMS about the data (so it can optimize better)

21



Types of SQL constraints

• NOT NULL

• Key

• Referential integrity (foreign key)

• General assertion

• Tuple- and attribute-based CHECK’s

22



NOT NULL constraint examples

• CREATE TABLE User
(uid INTEGER NOT NULL,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL,
age INTEGER,
pop FLOAT);

• CREATE TABLE Group
(gid CHAR(10) NOT NULL,
name VARCHAR(100) NOT NULL);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL);

23



Key declaration

• At most one PRIMARY KEY per table
• Typically implies a primary index

• Rows are stored inside the index, typically sorted by the 
primary key value ⇒ best speedup for queries

• Any number of UNIQUE keys per table
• Typically implies a secondary index

• Pointers to rows are stored inside the index ⇒ less 
speedup for queries

24



Key declaration examples

• CREATE TABLE User
(uid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL UNIQUE,
age INTEGER,
pop FLOAT);

• CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL,
PRIMARY KEY(uid, gid));

25

This form is required for multi-attribute keys



Referential integrity example

• Member.uid references User.uid
• If an uid appears in Member, it must appear in User

• Member.gid references Group.gid
• If a gid appears in Member, it must appear in Group

That is, no “dangling pointers”

26

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

gid name

abc …

gov …

dps …

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User GroupMember



Referential integrity in SQL

• Referenced column(s) must be PRIMARY KEY

• Referencing column(s) form a FOREIGN KEY

• Example
• CREATE TABLE Member

(uid INTEGER NOT NULL
REFERENCES User(uid),

gid CHAR(10) NOT NULL,
PRIMARY KEY(uid, gid),
FOREIGN KEY (gid) REFERENCES Group(gid));

27

This form is useful for multi-attribute foreign keys



Enforcing referential integrity 

Example: Member.uid references User.uid

• Insert or update a Member row so it refers to a non-
existent uid
• Reject

• Delete or update a User row whose uid is 
referenced by some Member row
• Reject

• Cascade: ripple changes to all referring rows

• Set NULL: set all references to NULL

• All three options can be specified in SQL

28



Deferred constraint checking

• No-chicken-no-egg problem
• CREATE TABLE Dept

(name CHAR(20) NOT NULL PRIMARY KEY,
chair CHAR(30) NOT NULL

REFERENCES Prof(name));
CREATE TABLE Prof
(name CHAR(30) NOT NULL PRIMARY KEY,
dept CHAR(20) NOT NULL 

REFERENCES Dept(name));
• The first INSERT will always violate a constraint!

• Deferred constraint checking is necessary
• Check only at the end of a transaction
• Allowed in SQL as an option

• Curious how the schema was created in the first place?
• ALTER TABLE ADD CONSTRAINT (read the manual!)

29



General assertion

• CREATE ASSERTION 𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒
CHECK assertion_condition;

• assertion_condition is checked for each 
modification that could potentially violate it

• Example: Member.uid references User.uid
• CREATE ASSERTION MemberUserRefIntegrity

CHECK (NOT EXISTS
(SELECT * FROM Member
WHERE uid NOT IN
(SELECT uid FROM User)));

In SQL3, but not all (perhaps no) DBMS supports it

30



Tuple- and attribute-based CHECK’s
31

• Associated with a single table

• Only checked when a tuple/attribute is 
inserted/updated
• Reject if condition evaluates to FALSE
• TRUE and UNKNOWN are fine

• Examples:
• CREATE TABLE User(... 

age INTEGER CHECK(age IS NULL OR age > 0),
...);

• CREATE TABLE Member
(uid INTEGER NOT NULL,
CHECK(uid IN (SELECT uid FROM User)),
...);
• Is it a referential integrity constraint?
• Not quite; not checked when User is modified



SQL features covered so far

• Query
• SELECT-FROM-WHERE statements

• Set and bag operations

• Table expressions, subqueries

• Aggregation and grouping

• Ordering

• Outerjoins

• Modification
• INSERT/DELETE/UPDATE

• Constraints

Next: triggers, views, indexes

32


