SQL: Part Il

Introduction to Databases
CompSci 316 Spring 2019

E. DUKE
COMPUTER SCIENCE

1/31/19

Announcements (Thu., Jan. 31)

* Extra credit problems due on Feb 8 (Friday) 11:59 pm

* Project mixer next Tuesday in class (first half, 2"
half regular lecture)
* Presentation by Elliott Bolzan (your UTA) about their
project in the last semester — do not miss it!

* You will §et an idea how much work and what output is
expecte

* Please let me know by next Monday if you want to make
a pitch in front of the class (to recruit teammates)!

* Sudeepa’s office hours Wednesdays 1:30-2:30 pm,
LSRC D325.

Project resources

* Working web dev examples in PHP, Flask, and
Play/Java for course VM

* See “Help” on course website for more details

* Duke Co-Lab offerings INNOVng
* Many interesting “Roots” -
courses CO

* Build Your First iPhone or iPad App, Making Your Website
Interactive, Intro to React.js, Introduction to Linux, etc.
* Advance registration required

* Office hours on full-stack web/app development

Incomplete information

* Example: User (uid, name, age, pop)
* Value

* We do not know Nelson’s age
* Value

* Suppose pop is based on interactions with others on our
social networking site

* Nelson is new to our site; what is his pop?

Solution 1

* Dedicate a value from each domain (type)
* pop cannot be —1, so use —1 as a special value to
indicate a missing or invalid pop
* Leads to incorrect answers if not careful
* SELECT AVG(pop) FROM User;
» Complicates applications
+ SELECT AVG(pop) FROM User
WHERE pop <> -1;
* Perhaps the value is not
as special as you think!

* Ever heard of the Y2K bug?
“00” was used as a
missing or invalid year value

DECEMBER 31,1999
11:59 PM

JANUARY 1, 2000
12:01 AM

Bogp

Solution 2

* A valid-bit for every column
* User (uid,
name, name_is_valid,
age, age_is_valid,
pop, pop_is_valid)
» Complicates schema and queries

* SELECT AVG(pop) FROM User
WHERE pop_is_valid;

Solution 3

* Decompose the table; missing row = missing value
* UserName (uid, name)
UserAge (uid, age)
UserPop (uid, pop)
* UserlD (uid)
* Conceptually the cleanest solution
* Still complicates schema and queries
* How to get all information about users in a table?
* Natural join doesn’t work!

1/31/19

SQL’s solution

* A special value
* For every domain
* Special rules for dealing with NULL'’s

* Example: User (uid, name, age, pop)
* (789, “Nelson”, NULL, NULL)

Computing with NULL’s

* When we operate on a NULL and another value
(including another NULL) using +, —, etc., the
result is NULL

* Aggregate functions ignore NULL, except
COUNT(*) (since it counts rows)

Three-valued logic

* TRUE =1, FALSE =0, =0.5

* x AND y = min(x, y)

* x OR y =max(x,y)

*NOTx=1-x

* When we compare a NULL with another value

(including another NULL) using =, >, etc., the
result is UNKNOWN

* WHERE and HAVING clauses only select rows for
output if the condition evaluates to TRUE
* UNKNOWN is not enough

Unfortunate consequences

* SELECT AVG(pop) FROM User;
SELECT SUM(pop)/COUNT(*) FROM User;
* Not equivalent
* Although AVG(pop)=SUM(pop)/COUNT (pop) still
* SELECT * FROM User;
SELECT * FROM User WHERE pop = pop;
* Not equivalent

& Be careful: NULL breaks many equivalences

Another problem

* Example: Who has NULL pop values?
* SELECT * FROM User WHERE pop = NULL,;
* Does not work; never returns anything
* (SELECT * FROM User)
EXCEPTALL
(SELECT * FROM User WHERE pop = pop);
* Works, but ugly
* SQL introduced special, built-in predicates
and
* SELECT * FROM User WHERE pop IS NULL;

Outerjoin motivation

* Example: a master group membership list

» SELECT g.gid, g.name AS gname,
u.uid, u.name AS uname

FROM Group g, Member m, User u

WHERE g.gid = m.gid AND m.uid = u.uid;
* What if a group is empty?
* It may be reasonable for the master list to include empty

groups as well

* For these groups, uid and uname columns would be NULL

1/31/19

Outerjoin flavors and definitions

* A full outerjoin between R and S (denoted R < 5)
includes all rows in the result of R x S, plus

* “Dangling” R rows (those that do not join with any S
rows) padded with NULL'’s for §’s columns

* “Dangling” S rows (those that do not join with any R
rows) padded with NULL’s for R’s columns
* Aleft outerjoin (R »< S) includes rows in R > S plus
dangling R rows padded with NULL’s

* Aright outerjoin (R »< S) includes rows in R @ S
plus dangling S rows padded with NULL’s

Outerjoin examples

Group >4 Member abe Book Club 857
gov Student Government 123
gov Student Government 857
Group
dps Dead Putting Society 142
[Loone] S T —
abe Book Club
e e [gid Jname __________ luid |
dps Dead Putting Society
Group > Member ae Book Club 857
nuk United Nuclear Workers
gov Student Government 123
gov Student Government 857
Member dps Dead Putting Society 142
[uid | foo NULL 789
142 dps
| g (g _Jname __________Jud |
857 abe Group > Member e Book Club 857
857 gov gov Student Government 123
789 foo gov Student Government 857
dps Dead Putting Society 142
nuk United Nuclear Workers NULL
foo NULL 789

Outerjoin syntax

* SELECT * FROM Group |.EFT OUTER JOIN Member
ON Group.gid = Member.gid;

~ Group X _ Member
Group.gid=Member.gid

* SELECT * FROM Group RIGHT OUTER JOIN Member
ON Group.gid = Member.gid;

~ Group o _ Member
Group.gid=Member.gid

* SELECT * FROM Group FULL OUTER JOIN Member
ON Group.gid = Member.gid;

~ Group > _ Member
Group.gid=Member.gid

@A similar construct exists for regular (“inner”) joins:

¢ SELECT * FROM Group JOIN Member
ON Group.gid = Member.gid;

@ These are theta joins rather than natural joins
 Return all columns in Group and Member

f®=&c\)1r natural joins, add keyword NATURAL; don’t use

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Table expressions, subqueries

* Aggregation and grouping

* Ordering

* NULL’s and outerjoins

@ Next: data modification statements, constraints

INSERT

* Insert one row
* INSERT INTO Member VALUES (789, 'dps');
* User 789 joins Dead Putting Society

* Insert the result of a query
e INSERT INTO Member
(SELECT uid, 'dps' FROM User
WHERE uid NOT IN (SELECT uid
FROM Member
WHERE gid = 'dps"));
* Everybody joins Dead Putting Society!

DELETE

* Delete everything from a table

* Delete according to a WHERE condition
Example: User 789 leaves Dead Putting Society

Example: Users under age 18 must be removed
from United Nuclear Workers

1/31/19

UPDATE

* Example: User 142 changes name to “Barney”

* Example: We are all popular!

* But won’t update of every row causes average pop to change?
@ Subquery is always computed over the old table

Constraints

* Restrictions on allowable data in a database

* In addition to the simple structure and type restrictions
imposed by the table definitions

* Declared as
* Enforced by the DBMS
* Why use constraints?
* Protect data integrity (catch errors)
* Tell the DBMS about the data (so it can optimize better)

Types of SQL constraints

* NOT NULL

* Key

* Referential integrity (foreign key)
* General assertion

* Tuple- and attribute-based CHECK’s

NOT NULL constraint examples

* CREATE TABLE User

(uid INTEGER

name VARCHAR(30)
twitterid VARCHAR(15)
age INTEGER,

pop FLOAT);

* CREATE TABLE Group
(gid CHAR(10) ,
name VARCHAR(100));

* CREATE TABLE Member

(uid INTEGER
gid CHAR(10))

Key declaration

* At most one per table
* Typically implies a
* Rows are stored inside the index, typically sorted by the
primary key value = best speedup for queries
* Any number of keys per table
* Typically implies a

* Pointers to rows are stored inside the index = less
speedup for queries

Key declaration examples

* CREATE TABLE User
(uid INTEGER NOT NULL
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL
age INTEGER,
pop FLOAT);
* CREATE TABLE Group
(gid CHAR(10) NOT NULL
name VARCHAR(100) NOT NULL);

« CREATE TABLE Member
(uid INTEGER NOT NULL,
gid CHAR(10) NOT NULL,

5

\ This form is required for multi-attribute keys

1/31/19

Referential integrity example

* Member.uid references User.uid

* If an uid appears in Member, it must appear in User
* Member.gid references Group.gid

* If agid appears in Member, it must appear in Group
@ That is, no “dangling pointers”

m User u Member Group
| name __|

142 Bart . =142 dps abc

123 Milhouse 28 gov. gov

857 Lisa < 857 abc dps

456 Ralph . 857 gov

789 Nelson \456 abe

456 gov

Referential integrity in SQL

* Referenced column(s) must be PRIMARY KEY
* Referencing column(s) form a
* Example
* CREATE TABLE Member

(uid INTEGER NOT NULL

gid CHAR(10) NOT NULL,

PRIMARY KEY(uid, gid),

)i

\ This form is useful for multi-attribute foreign keys

Enforcing referential integrity

Example:

* Insert or update a Member row so it refers to a non-
existent uid

: ripple changes to all referring rows
: set all references to NULL
* All three options can be specified in SQL

Deferred constraint checking

* No-chicken-no-egg problem
+ CREATE TABLE
(CHAR(20) NOT NULL PRIMARY KEY,

CHAR(30) NOT NULL
)
CREATE TABLE
(CHAR(30) NOT NULL PRIMARY KEY,
CHAR(20) NOT NULL

)

is necessary
* Check only at the end of a transaction
* Allowed in SQL as an option
* Curious how the schema was created in the first place?
(read the manual!)

General assertion

* assertion_condition is checked for each
modification that could potentially violate it

* Example: Member.uid references User.uid

@ In SQL3, but not all (perhaps no) DBMS supports it

Tuple- and attribute-based CHECK'’s

* Associated with a single table
* Only checked when a tuple/attribute is
inserted/updated
* Reject if condition evaluates to FALSE
* TRUE and UNKNOWN are fine
* Examples:

* CREATE TABLE User(...
age INTEGER

* CREATE TABLE Member
(uid INTEGER NOT NULL,

)
* Isit areferential integrity constraint?
 Not quite; not checked when User is modified

1/31/19

SQL features covered so far

* Query
* SELECT-FROM-WHERE statements
* Set and bag operations
* Table expressions, subqueries
« Aggregation and grouping
* Ordering
* Outerjoins
* Modification
» INSERT/DELETE/UPDATE
* Constraints

@ Next: triggers, views, indexes

