
SQL: Recursion
Introduction to Databases
CompSci 316 Spring 2019



Announcements (Tue., Feb. 12/Thu. Feb 14)
• Midterm in next class Feb 19 (Tuesday)

• Everything covered until the class today 2/14 is included

• Extra Office Hours
• Sunday, 10-12 noon, Perkins 110: Elliott
• Monday, 4:30-7:30, LSRC D243: Sarah
• Sudeepa: TBD

• HW2 posted
• Probs 1 & 2 Due on Feb 21 (Thu)
• Other problems due on Feb 28 (Thu)

• Practice midterm posted on sakai
• Try yourself first within time limit!

• Milestone 1 for project due on Feb 26 (Tuesday) in 3 weeks
• Let me know asap if still looking for a group

2



3

http://xkcdsw.com/1105



A motivating example

• Example: find Bart’s ancestors
• “Ancestor” has a recursive definition
• 𝑋 is 𝑌’s ancestor if

• 𝑋 is 𝑌’s parent, or
• 𝑋 is 𝑍’s ancestor and 𝑍 is 𝑌’s ancestor

4

Parent (parent, child)
parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe
Bart Lisa

MargeHomer

Abe

Ape



Recursion in SQL

• SQL2 had no recursion
• You can find Bart’s parents, grandparents, great 

grandparents, etc.
SELECT p1.parent AS grandparent
FROM Parent p1, Parent p2
WHERE p1.child = p2.parent
AND p2.child = 'Bart';

• But you cannot find all his ancestors with a single query

• SQL3 introduces recursion
• WITH clause
• Implemented in PostgreSQL (common table 

expressions)

5



base case

Ancestor query in SQL3

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

6

Query using the relation
defined in WITH clause

Define
a relation

recursivelyrecursion step



Fixed point of a function

• If 𝑓: 𝐷 → 𝐷 is a function from a type 𝐷 to itself, a 
fixed point of 𝑓 is a value 𝑥 such that 𝑓 𝑥 = 𝑥
• Example: What is the fixed point of 𝑓 𝑥 = 𝑥 2⁄ ?
• 0, because 𝑓 0 = 0 2⁄ = 0

• To compute a fixed point of 𝑓
• Start with a “seed”: 𝑥 ← 𝑥.
• Compute 𝑓 𝑥

• If 𝑓 𝑥 = 𝑥, stop; 𝑥 is fixed point of 𝑓
• Otherwise, 𝑥 ← 𝑓 𝑥 ; repeat

• Example: compute the fixed point of 𝑓 𝑥 = 𝑥 2⁄
• With seed 1: 1, 1/2, 1/4, 1/8, 1/16, … → 0

FDoesn’t always work, but happens to work for us!

7



Fixed point of a query

• A query 𝑞 is just a function that maps an input table 
to an output table, so a fixed point of 𝑞 is a table 𝑇
such that 𝑞 𝑇 = 𝑇
• To compute fixed point of 𝑞
• Start with an empty table: 𝑇 ← ∅
• Evaluate 𝑞 over 𝑇

• If the result is identical to 𝑇, stop; 𝑇 is a fixed point
• Otherwise, let 𝑇 be the new result; repeat

FStarting from ∅ produces the unique minimal fixed 
point (assuming 𝑞 is monotone)

8



Finding ancestors
• WITH RECURSIVE

Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))
• Think of the definition as Ancestor = 𝑞(Ancestor)

9

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

Ape Bart

Ape Lisa



Intuition behind fixed-point iteration

• Initially, we know nothing about ancestor-
descendent relationships
• In the first step, we deduce that parents and 

children form ancestor-descendent relationships
• In each subsequent steps, we use the facts 

deduced in previous steps to get more ancestor-
descendent relationships
• We stop when no new facts can be proven

10



Linear recursion
• With linear recursion, a recursive definition can make 

only one reference to itself
• Non-linear

• WITH RECURSIVE Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

• Linear
• WITH RECURSIVE Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
UNION
(SELECT anc, child
FROM Ancestor, Parent
WHERE desc = parent))

11



Linear vs. non-linear recursion

• Linear recursion is easier to implement
• For linear recursion, just keep joining newly generated 

Ancestor rows with Parent
• For non-linear recursion, need to join newly generated 

Ancestor rows with all existing Ancestor rows

• Non-linear recursion may take fewer steps to 
converge, but perform more work
• Example: 𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒
• Linear recursion takes 4 steps
• Non-linear recursion takes 3 steps

• More work: e.g., 𝑎 → 𝑑 has two different derivations

12



13

http://xkcdsw.com/3080



Mutual recursion example

• Table Natural (n) contains 1, 2, …, 100
• Which numbers are even/odd?
• An odd number plus 1 is an even number
• An even number plus 1 is an odd number
• 1 is an odd number

WITH RECURSIVE Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

14



Semantics of WITH
• WITH RECURSIVE 𝑅8 AS 𝑄8, …,

RECURSIVE 𝑅: AS 𝑄:
𝑄;
• 𝑄 and 𝑄8,… , 𝑄: may refer to 𝑅8,… , 𝑅:

• Semantics
1. 𝑅8 ← ∅,… , 𝑅: ← ∅
2. Evaluate 𝑄8,… , 𝑄: using the current contents of 𝑅8,… , 𝑅::
𝑅8:=> ← 𝑄8,… , 𝑅::=> ← 𝑄:

3. If 𝑅?:=> ≠ 𝑅? for some 𝑖
3.1. 𝑅8 ← 𝑅8:=>,… , 𝑅: ← 𝑅::=>
3.2. Go to 2.

4. Compute 𝑄 using the current contents of 𝑅8,…𝑅:
and output the result

15



Computing mutual recursion
WITH RECURSIVE Even(n) AS

(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),
RECURSIVE Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

• Even = ∅, Odd = ∅
• Even = ∅, Odd = {1}
• Even = {2}, Odd = {1}
• Even = {2}, Odd = {1, 3}
• Even = {2, 4}, Odd = {1, 3}
• Even = {2, 4}, Odd = {1, 3, 5}
• …

16



Fixed points are not unique

• But if 𝑞 is monotone, then 
all these fixed points must contain the fixed point we 
computed from fixed-point iteration starting with ∅
• Thus the unique minimal fixed point is the “natural” answer

17

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

Ape Bart

Ape Lisa

Bogus Bogus
Note how the bogus tuple

reinforces itself!

Included in the midterm up to and including this slide



Mixing negation with recursion

• If 𝑞 is non-monotone
• The fixed-point iteration may flip-flop and never converge
• There could be multiple minimal fixed points—we 

wouldn’t know which one to pick as answer!

• Example: popular users (pop ≥ 0.8) join either 
Jessica’s Circle or Tommy’s
• Those not in Jessica’s Circle should be in Tom’s
• Those not in Tom’s Circle should be in Jessica’s
• WITH RECURSIVE TommyCircle(uid) AS

(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

18



Fixed-point iter may not converge
WITH RECURSIVE TommyCircle(uid) AS

(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

19

uid name age pop

142 Bart 10 0.9

121 Allison 8 0.85

uid uid

TommyCircle JessicaCircle
uid

142

121

uid

142

121

TommyCircle JessicaCircle



Multiple minimal fixed points
WITH RECURSIVE TommyCircle(uid) AS

(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM JessicaCircle)),
RECURSIVE JessicaCircle(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM TommyCircle))

20

uid name age pop

142 Bart 10 0.9

121 Allison 8 0.85

uid

142

uid

121

TommyCircle JessicaCircle
uid

121

uid

142

TommyCircle JessicaCircle



Legal mix of negation and recursion

• Construct a dependency graph
• One node for each table defined in WITH
• A directed edge 𝑅 → 𝑆 if 𝑅 is defined in terms of 𝑆
• Label the directed edge “−” if the query defining 𝑅 is 

not monotone with respect to 𝑆
• Legal SQL3 recursion: no cycle with a “−” edge
• Called stratified negation

• Bad mix: a cycle with at least one edge labeled “−”

21

Ancestor

Legal!

TommyCircle JessicaCircle

−

− Illegal!



Stratified negation example
• Find pairs of persons with no common ancestors

WITH RECURSIVE Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent) UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)),

Person(person) AS
((SELECT parent FROM Parent) UNION
(SELECT child FROM Parent)),

NoCommonAnc(person1, person2) AS
((SELECT p1.person, p2.person
FROM Person p1, Person p2
WHERE p1.person <> p2.person)
EXCEPT
(SELECT a1.desc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.anc = a2.anc))

SELECT * FROM NoCommonAnc;

22

Ancestor

Person

NoCommonAnc

−



Evaluating stratified negation

• The stratum of a node 𝑅 is the maximum number of 
“−” edges on any path from 𝑅
in the dependency graph
• Ancestor: stratum 0
• Person: stratum 0
• NoCommonAnc: stratum 1

• Evaluation strategy
• Compute tables lowest-stratum first
• For each stratum, use fixed-point iteration on all nodes 

in that stratum
• Stratum 0: Ancestor and Person
• Stratum 1: NoCommonAnc

FIntuitively, there is no negation within each stratum

23

Ancestor

Person

NoCommonAnc

−



Summary

• SQL3 WITH recursive queries
• Solution to a recursive query (with no negation): 

unique minimal fixed point
• Computing unique minimal fixed point: fixed-point 

iteration starting from ∅
• Mixing negation and recursion is tricky
• Illegal mix: fixed-point iteration may not converge; there 

may be multiple minimal fixed points
• Legal mix: stratified negation (compute by fixed-point 

iteration stratum by stratum)

24


