
SQL: Programming
Introduction to Databases

CompSci 316 Spring 2019

Announcements (Thu., Feb 21)

• Homework 2 Problem 1 due today

• Homework 2 Problems 2 due tomorrow

• Homework 2 Problems 4, 5, X1 due next Thu.

• Non-gradiance problems: 5% per hour late penalty

• Project milestone #1 due on Tuesday
• Only one member per team needs to submit

• Remember members.txt

• Zhengjie’s office hour 2:30-3:30 tomorrow In LSRC
D316 (next to elevator)

2

Motivation

• Pros and cons of SQL
• Very high-level, possible to optimize

• Not intended for general-purpose computation

• Solutions
• Augment SQL with constructs from general-purpose

programming languages
• E.g.: SQL/PSM

• Use SQL together with general-purpose programming
languages: many possibilities
• Through an API, e.g., Python psycopg2

• Embedded SQL, e.g., in C

• Automatic object-relational mapping, e.g.: Python SQLAlchemy

• Extending programming languages with SQL-like constructs,
e.g.: LINQ

3

An “impedance mismatch”

• SQL operates on a set of records at a time

• Typical low-level general-purpose programming
languages operate on one record at a time
• Less of an issue for functional programming languages

Solution: cursor
• Open (a result table): position the cursor before the first

row
• Get next: move the cursor to the next row and return

that row; raise a flag if there is no such row
• Close: clean up and release DBMS resources
Found in virtually every database language/API

• With slightly different syntaxes

Some support more positioning and movement options,
modification at the current position, etc.

4

Augmenting SQL: SQL/PSM

• PSM = Persistent Stored Modules

• CREATE PROCEDURE proc_name(param_decls)
local_decls
proc_body;

• CREATE FUNCTION func_name(param_decls)
RETURNS return_type
local_decls
func_body;

• CALL proc_name(params);

• Inside procedure body:
SET variable = CALL func_name(params);

5

SQL/PSM example

CREATE FUNCTION SetMaxPop(IN newMaxPop FLOAT)
RETURNS INT
-- Enforce newMaxPop; return # rows modified.

BEGIN
DECLARE rowsUpdated INT DEFAULT 0;
DECLARE thisPop FLOAT;

-- A cursor to range over all users:
DECLARE userCursor CURSOR FOR

SELECT pop FROM User
FOR UPDATE;

-- Set a flag upon “not found” exception:
DECLARE noMoreRows INT DEFAULT 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND

SET noMoreRows = 1;

… (see next slide) …

RETURN rowsUpdated;

END

6

SQL/PSM example continued

-- Fetch the first result row:
OPEN userCursor;
FETCH FROM userCursor INTO thisPop;
-- Loop over all result rows:
WHILE noMoreRows <> 1 DO

IF thisPop > newMaxPop THEN
-- Enforce newMaxPop:
UPDATE User SET pop = newMaxPop
WHERE CURRENT OF userCursor;
-- Update count:
SET rowsUpdated = rowsUpdated + 1;

END IF;
-- Fetch the next result row:
FETCH FROM userCursor INTO thisPop;

END WHILE;
CLOSE userCursor;

7

Other SQL/PSM features

• Assignment using scalar query results
• SELECT INTO

• Other loop constructs
• FOR, REPEAT UNTIL, LOOP

• Flow control
• GOTO

• Exceptions
• SIGNAL, RESIGNAL

…

• For more PostgreSQL-specific information, look for
“PL/pgSQL” in PostgreSQL documentation
• Link available from course website (under Help:

PostgreSQL Tips)

8

Working with SQL through an API

• E.g.: Python psycopg2, JDBC, ODBC (C/C++/VB)
• All based on the SQL/CLI (Call-Level Interface) standard

• The application program sends SQL commands to
the DBMS at runtime

• Responses/results are converted to objects in the
application program

9

Example API: Python psycopg2

import psycopg2

conn = psycopg2.connect(dbname='beers')

cur = conn.cursor()

list all drinkers:

cur.execute('SELECT * FROM Drinker')

for drinker, address in cur:

print(drinker + ' lives at ' + address)

print menu for bars whose name contains “a”:

cur.execute('SELECT * FROM Serves WHERE bar LIKE %s', ('%a%',))

for bar, beer, price in cur:

print('{} serves {} at ${:,.2f}'.format(bar, beer, price))

cur.close()

conn.close()

10

You can iterate over cur
one tuple at a time

Placeholder for
query parameter

Tuple of parameter values,
one for each %s

(note that the trailing “,” is needed when
the tuple contains only one value)

More psycopg2 examples
“commit” each change immediately—need to set this option just once

at the start of the session

conn.set_session(autocommit=True)

...

bar = input('Enter the bar to update: ').strip()

beer = input('Enter the beer to update: ').strip()

price = float(input('Enter the new price: '))

try:

cur.execute('''

UPDATE Serves

SET price = %s

WHERE bar = %s AND beer = %s''', (price, bar, beer))

if cur.rowcount != 1:

print('{} row(s) updated: correct bar/beer?'\

.format(cur.rowcount))

except Exception as e:

print(e)

11

of tuples modified

Exceptions can be thrown
(e.g., if positive-price constraint is violated)

Prepared statements: motivation

while True:

Input bar, beer, price…

cur.execute('''

UPDATE Serves

SET price = %s

WHERE bar = %s AND beer = %s''', (price, bar, beer))

Check result...

• Every time we send an SQL string to the DBMS, it
must perform parsing, semantic analysis,
optimization, compilation, and finally execution

• A typical application issues many queries with a
small number of patterns (with different parameter
values)

• Can we reduce this overhead?

12

Prepared statements: example
cur.execute(''' # Prepare once (in SQL).
PREPARE update_price AS # Name the prepared plan,
UPDATE Serves
SET price = $1 # and note the $1, $2, … notation for
WHERE bar = $2 AND beer = $3''') # parameter placeholders.

while True:

Input bar, beer, price…

cur.execute('EXECUTE update_price(%s, %s, %s)',\ # Execute many times.
(price, bar, beer))

Note the switch back to %s for parameter placeholders.

Check result...

• The DBMS performs parsing, semantic analysis, optimization, and
compilation only once, when it “prepares” the statement

• At execution time, the DBMS only needs to check parameter
types and validate the compiled plan

• Most other API’s have better support for prepared statements
than psycopg2
• E.g., they would provide a cur.prepare() method

13

See /opt/dbcourse/examples/psycopg2/

on your VM for a complete code example

“Exploits of a mom”

• The school probably had something like:
cur.execute("SELECT * FROM Students " + \

"WHERE (name = '" + name + "')")

where name is a string input by user

• Called an SQL injection attack

14

http://xkcd.com/327/

Guarding against SQL injection

• Escape certain characters in a user input string, to
ensure that it remains a single string
• E.g., ', which would terminate a string in SQL, must be

replaced by '' (two single quotes in a row) within the
input string

• Luckily, most API’s provide ways to “sanitize” input
automatically (if you use them properly)
• E.g., pass parameter values in psycopg2 through %s’s

15

If one fails to learn the lesson…
16

… P.S. To Ashley Madison’s Development Team:
You should be embarrased [sic] for your train
wreck of a database (and obviously security), not
sanitizing your phone numbers to your database
is completely amateur, it’s as if the entire site was
made by Comp Sci 1XX students.

— Creators of CheckAshleyMadison.com

http://www.washingtonpost.com/news/the-intersect/wp/2015/08/19/how-to-see-if-you-or-your-spouse-appear-in-the-ashley-madison-leak/

Augmenting SQL vs. API

• Pros of augmenting SQL:
• More processing features for DBMS

• More application logic can be pushed closer to data
• Less data “shipping,” more optimization opportunities ⇒

more efficient

• Less code ⇒ easier to maintain multiple applications

• Cons of augmenting SQL:
• SQL is already too big—at some point one must recognize

that SQL/DBMS are not for everything!

• General-purpose programming constructs complicate
optimization and make it impossible to guarantee safety

17

A brief look at other approaches

• “Embed” SQL in a general-purpose programming
language
• E.g.: embedded SQL

• Support database features through an object-
oriented programming language
• By automatically storing objects in tables and translating

methods to SQL

• E.g., object-relational mappers (ORM) like Python
SQLAlchemy

• Extend a general-purpose programming language
with SQL-like constructs
• E.g.: LINQ (Language Integrated Query for .NET)

18

Embedding SQL in a language

EXEC SQL BEGIN DECLARE SECTION;
int thisUid; float thisPop;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE ABCMember CURSOR FOR
SELECT uid, pop FROM User
WHERE uid IN (SELECT uid FROM Member WHERE gid = 'abc')
FOR UPDATE;

EXEC SQL OPEN ABCMember;
EXEC SQL WHENEVER NOT FOUND DO break;

while (1) {

EXEC SQL FETCH ABCMember INTO :thisUid, :thisPop;
printf("uid %d: current pop is %f\n", thisUid, thisPop);

printf("Enter new popularity: ");
scanf("%f", &thisPop);
EXEC SQL UPDATE User SET pop = :thisPop

WHERE CURRENT OF ABCMember;
}

EXEC SQL CLOSE ABCMember;

19

Declare variables to be “shared”
between the application and DBMS

Specify a handler for
NOT FOUND exception

Example in C

Object-relational mapping

• Example: Python SQLAlchemy

• Automatic data mapping and query translation

• But syntax may vary for different host languages

• Very convenient for simple structures/queries, but quickly
get complicated and less intuitive for more complex
situations

20

class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String)
password = Column(String)

class Address(Base):
__tablename__ = 'addresses'
id = Column(Integer, primary_key=True)
email_address = Column(String, nullable=False)
user_id = Column(Integer, ForeignKey('users.id'))

Address.user = relationship("User", back_populates="addresses")
User.addresses = relationship("Address", order_by=Address.id, back_populates="user")

jack = User(name='jack', password='gjffdd')
jack.addresses = [Address(email_address='jack@google.com’),

Address(email_address='j25@yahoo.com')]
session.add(jack)
session.commit()

session.query(User).join(Address).filter(Address.email_address=='jack@google.com').all()

https://docs.sqlalchemy.org/en/latest/orm/tutorial.html

Deeper language integration

• Example: LINQ (Language Integrated Query) for
Microsoft .NET languages (e.g., C#)

int someValue = 5;
var results = from c in someCollection

let x = someValue * 2
where c.SomeProperty < x
select new {c.SomeProperty, c.OtherProperty};

foreach (var result in results) {
Console.WriteLine(result);

}

• Again, automatic data mapping and query
translation

• Much cleaner syntax, but it still may vary for
different host languages

21

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

