SQL: Programming
Introduction to Databases
CompSci 316 Spring 2019

E. DUKE
COMPUTER SCIENCE

2/21/19

Announcements (Thu., Feb 21)

due today
due tomorrow
due next Thu.

due on Tuesday
* Only one member per team needs to submit
* Remember members.txt

Motivation

* Pros and cons of SQL
* Very high-level, possible to optimize
* Not intended for general-purpose computation

* Solutions
* Augment SQL with constructs from general-purpose
programming languages
* E.g.:SQL/PSM
* Use SQL together with general-purpose programming
languages: many possibilities
* Through an API, e.g., Python psycopg2
* Embedded SQL, e.g., in C
* Automatic object-relational mapping, e.g.: Python SQLAIchemy

* Extending programming languages with SQL-like constructs,
e.g: LINQ

An “impedance mismatch”

* SQL operates on

* Typical low-level general-purpose programming
languages operate on
* Less of anissue for functional programming languages

@ Solution:
(aresult table): position the cursor before the first
row
: move the cursor to the next row and return
that row; raise a flag if there is no such row
: clean up and release DBMS resources
#Found in virtually every database language/API
« With slightly different syntaxes
“Some support more positioning and movement options,
modification at the current position, etc.

Augmenting SQL: SQL/PSM

= Persistent Stored Modules

proc_name(param_decls
local_decls
proc_body
func_name(param_decls
return_type
local_decls
func_body

proc_namel(params

* Inside procedure body:
variable func_name(params

SQL/PSM example

CREATE FUNCTION SetMaxPop(IN newMaxPop FLOAT)
RETURNS INT

BEGIN
DECLARE rowsUpdated INT DEFAULT 0;
DECLARE thisPop FLOAT;

DECLARE userCursor CURSOR FOR
SELECT pop FROM User
FOR UPDA Ep

DECLARE noMoreRows INT DEFAULT 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND
SET noMoreRows = 1;

RETURN rowsUpdated;
END

SQL/PSM example continued

-- Fetch the first result row:
OPEN userCursor;
FETCH FROM userCursor INTO thisPop;
-- Loop over all result rows:
'WHILE noMoreRows <> 1 DO
IF thisPop > newMaxPop THEN
-- Enforce newMaxPop:
UPDATE User SET pop = newMaxPop
WHERE CURRENT OF userCursor;
-- Update count:
SET rowsUpdated = rowsUpdated + 1;
END IF;
-- Fetch the next result row:
FETCH FROM userCursor INTO thisPop;
END WHILE;
CLOSE userCursor;

2/21/19

Other SQL/PSM features

* Assignment using scalar query results
* SELECT INTO
* Other loop constructs
* FOR, REPEAT UNTIL, LOOP
* Flow control
* GOTO
* Exceptions
* SIGNAL, RESIGNAL

* For more PostgreSQL-specific information, look for
“PL/pgSQL” in PostgreSQL documentation
* Link available from course website (under

Working with SQL through an API

* E.g.: Python psycopg2, JDBC, ODBC (C/C**/VB)
* All based on the SQL/CLI (Call-Level Interface) standard

* The application program sends SQL commands to
the DBMS at runtime

* Responses/results are converted to objects in the
application program

Example API: Python psycopg?2

import psycopgR
conn = psycopgR.connect(dbname="beers")
cur = conn.cursor()
list all drinkers
cur.execute('SELECT * FROM Drinker")
for drinker, address in cur:
print(drinker +'lives at ' + address)
se name contains “a”
cur.execute('SELECT * FROM Serves WHERE bar LIKE %s', (‘%a%',))
for bar, beer, price in cur:

print menu for bars wt

print('{} serves {} at ${:,.2f}" format(bar, beer, price))
cur.close()

conn.close()

More psycopg2 examples

mit” each change immediately—need to set this option just once at the sta.

th sion
conn.set_session(autocommit=True)

bar = input('Enter the bar to update: ").strip()
beer = input('Enter the beer to update: ").strip()
price = float(input('Enter the new price: "))

try:

cur.execute("
UPDATE Serves
SET price = %s
WHERE bar = %s AND beer = %s", (price, bar, beer))

if cur.rowcount /= 1:

print('{} row(s) updated: correct bar/beer?'\
format(cur.rowcount))

except Exception as e:
print(e)

Prepared statements: motivation

while True:
Input bar, beer, price

cur.execute(""
UPDATE Serves
SET price = %s
WHERE bar = %s AND beer = %s", (price, bar, beer))

* Every time we send an SQL string to the DBMS, it
must perform parsing, semantic analysis,
optimization, compilation, and finally execution

* A typical application issues many queries with a
small number of patterns (with different parameter
values)

* Can we reduce this overhead?

2/21/19

Prepared statements: example

See loptldbcourse/examples/psycopg2/
@ 4 Prepare once on your VM for a complete code example
PREPARE update_price AS # Name the pref
UPDATE Serves
SETEDFA:ice= 1 # and note the
WHERE bar = $2 AND beer = $3") # parameter
‘while True:

Input bar, beer, pric

cur.execute('(EXECUTE update_price(%s, %s, %s),\ # Exccute many times
(price, bar, beer))

Note the switch back aramete: eholders
Check result

* The DBMS performs parsing, semantic analysis,
optimization, and compilation only once, when it

“prepares” the statement
* At execution time, the DBMS only needs to check
parameter types and validate the compiled plan

* Most other API’s have better support for prepared
statements than psycopg2
* E.g., they would provide a cur.prepare() method

“Exploits of a mom”

HI, THIS 15

YOUR SONS SCHOOL.
WERE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY—

2

DID YOU REALLY
INAME YOUR SON
Robert!); DROP
TABLE Students;-~ 7

~ OH.YES UTTE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

AND I HOPE
- YOUVE LEARNED
L TOSAWMZE YOUR
DATABASE INPUT5.

http://xked.com 32

* The school probably had something like:

name

where name is a string input by user

e Called an

Guarding against SQL injection

* Escape certain characters in a user input string, to
ensure that it remains a single string
* E.g.,', which would terminate a string in SQL, must be
replaced by " (two single quotes in a row) within the
input string
* Luckily, most API’s provide ways to “sanitize” input
automatically (if you use them properly)
* E.g., pass parameter values in psycopg?2 through %s’s

If one fails to learn the lesson...

ASHLEY

MADIS=N*

Life is short. Have an affair.®

... P.S. To Ashley Madison’s Development Team:
You should be embarrased [sic] for your train
wreck of a database (and obviously security), not
sanitizing your phone numbers to your database
is completely amateur, it’s as if the entire site was
made by Comp Sci 1XX students.

— Creators of CheckAshleyMadison.com

Augmenting SQL vs. API

* Pros of augmenting SQL:
* More processing features for DBMS
* More application logic can be pushed closer to data

* Less data “shipping,” more optimization opportunities =
more efficient
* Less code = easier to maintain multiple applications

* Cons of augmenting SQL:
* SQLis already too big—at some point one must recognize
that SQL/DBMS are not for everything!
* General-purpose programming constructs complicate
optimization and make it impossible to guarantee safety

A brief look at other approaches

* “Embed” SQL in a general-purpose programming

language

* E.g.: embedded SQL

* Support database features through an object-
oriented programming language

* By automatically storing objects in tables and translating
methods to SQL

* E.g., object-relational mappers (ORM) like Python
SQLAIchemy

* Extend a general-purpose programming language
with SQL-like constructs

* E.g.: LINQ (Language Integrated Query for .NET)

Embedding SQL in a language

Examplein C

BEGIN DECLARE SECTION;
int thisUid; float thisPop;
END DECLARE SECTION;

DECLARE ABCMember CURSOR FOR
SELECT uid, pop FROM User
WHERE uid IN (SELECT uid FROM Member WHERE gid = 'abc')
FOR UPDATE;

OPEN ABCMember;
WHENEVER NOT FOUND DO break;
while (1) {

FETCH ABCMember INTO :thisUid, :thisPop;
printf("uid %d: current pop is %f\n", thisUid, thisPop);
printf("Enter new popularity: ");
scanf("%f", &thisPop);

UPDATE User SET pop = :thisPop

WHERE CURRENT OF ABCMember;

CLOSE ABCMember;

2/21/19

Object-relational mapping

* Example: Python SQLAIchemy

class User(Base): class Address(Base):
tablename__ = ‘users’ tablename__ = addresses’
id = Column(Integer, primary_key=True) id = Column(Integer, primary_key=True)
name = Column(String) email_address = Column(String, nullable=False)
password = Column(String) user_id = Column(Integer, ForeignKey('users.id’))

Address.user = relationship("User", back_populates="addresses'
User.addresses = relationship(" Address", order_by=Address.id, back_populates="user")

jack = User(name=fack', password
ek addrosses - |

Address(email_address- 2yahoo.com’)]
session.add(jack)

session.commit()

session.query(User)join(Address)filter(Address.email_address==1 com’).all()

* Automatic data mapping and query translation
* But syntax may vary for different host languages

* Very convenient for simple structures/queries, but quickly
get complicated and less intuitive for more complex
Situations

Deeper language integration

* Example: LINQ (Language Integrated Query) for
Microsoft .NET languages (e.g., C#)
int someValue = 5;
var results = from ¢ in someCollection
let x = someValue * 2
where c.SomeProperty < x
select new {c.SomeProperty, c.OtherProperty};
foreach (var result in results) {
Console.WriteLine(result);

}
* Again, automatic data mapping and query
translation

* Much cleaner syntax, but it still may vary for
different host languages

