SQL: Transactions

Introduction to Databases
CompSci 316 Spring 2019

KE
COMPUTER SCIENCE

2/26/19

Announcements (Tue., Feb. 26)

due tonight
* Please submit one report per group

due on Thursday

Motivation: Concurrent Execution

» Concurrent execution of user programs is essential for good
DBMS performance.
- Disk accesses are frequent, and relatively slow

- itisimportant to keep the CPU busy by working on several user
programs concurrently

« short transactions may finish early if interleaved with long ones
- may increase system throughput (avg. #transactions per unit time) and
decrease response time (avg. time to complete a transaction)
* Auser’s program may carry out many operations on the data
retrieved from the database

* but the DBMS is only concerned about what data is read/written
from/to the database

Transactions
T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06‘B END

* Atransaction is the DBMS’s abstract view of a user program

* asequence of reads and write

* the same program executed multiple times would be considered as
different transactions

* DBMS will enforce some ICs, depending on the ICs declared in
CREATE TABLE statements

* Beyond this, the DBMS does not really understand the semantics of
the data. (e.g., it does not understand how the interest on a bank
account is computed)

Example

* Consider two transactions:

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Intuitively, the first transaction is transferring $100 from B’s account
to A’s account. The second is crediting both accounts with a 6%
interest payment

There is no guarantee that T1 will execute before T2 or vice-versa, if
both are submitted together.

However, the net effect must be equivalent to these two transactions
running serially in some order

Example
T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

* Consider a possible interleaving (schedule):

TI: A=A+100, B=B-100
T2: A=1.06%A, B=1.06*B

< This is OK. But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06"B

< The DBMS's view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Commit and Abort

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*‘B END

* A transaction might commit after completing all its
actions

* orit could abort (or be aborted by the DBMS) after
executing some actions

2/26/19

Concurrency Control and Recovery

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*'B END

» Concurrency Control
* (Multiple) users submit (multiple) transactions

 Concurrency is achieved by the DBMS, which interleaves actions
(reads/writes of DB objects) of various transactions

* user should think of each transaction as executing by itself one-at-a-time

« The DBMS needs to handle concurrent executions

- Recovery
« Due to crashes, there can be partial transactions
- DBMS needs to ensure that they are not visible to other transactions

ACID Properties

* Atomicity

* Consistency
* Isolation

* Durability

Atomicity
T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

* A user can think of a transaction as always executing
all its actions in one step, or not executing any
actions at all

« Users do not have to worry about the effect of incomplete
transactions

Consistency

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

* Each transaction, when run by itself with no concurrent
execution of other actions, must preserve the consistency
of the database

« e.g.if you transfer money from the savings account to the checking
account, the total amount still remains the same

Isolation
T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06‘B END

* Auser should be able to understand a transaction
without considering the effect of any other
concurrently running transaction

« even if the DBMS interleaves their actions

* transaction are “isolated or protected” from other
transactions

Durability

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*‘B END

* Once the DBMS informs the user that a
transaction has been successfully completed,
its effect should persist

* evenif the system crashes before all its changes
are reflected on disk

Next, how we maintain all these four properties

But, in detail later

2/26/19

Ensuring Consistency

* e.g. Money debit and credit between accounts

* User’s responsibility to maintain the integrity
constraints

* DBMS may not be able to catch such errors in user
program’s logic
* e.g. if the credit is (debit - 1)
* However, the DBMS may be in inconsistent state
“during a transaction” between actions
» which is ok, but it should leave the database at a
consistent state when it commits or aborts
* Database consistency follows from transaction
consistency, isolation, and atomicity

Ensuring Isolation

* DBMS guarantees isolation (later, how)

* If T1 and T2 are executed concurrently, either the
effect would be T1->T2 or T2->T1 (and from a
consistent state to a consistent state)

* But DBMS provides no guarantee on which of these
order is chosen

* Often ensured by “locks” but there are other
methods too

Ensuring Atomicity

* Transactions can be incomplete due to several
reasons

* Aborted (terminated) by the DBMS because of some
anomalies during execution
« in that case automatically restarted and executed anew
* The system may crash (say no power supply)

* Atransaction may decide to abort itself encountering an
unexpected situation

* e.g.read an unexpected data value or unable to access disks

Ensuring Atomicity

* A transaction interrupted in the middle can leave
the database in an inconsistent state

* DBMS has to remove the effects of partial
transactions from the database

* DBMS ensures atomicity by “undoing” the actions
of incomplete transactions

* DBMS maintains a “log” of all changes to do so

Ensuring Durability

* The log also ensures durability

* If the system crashes before the changes made by a
completed transactions are written to the disk, the
log is used to remember and restore these changes
when the system restarts

* “recovery manager” will be discussed later
* takes care of atomicity and durability

2/26/19

Notations

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*‘B END

* Transaction is a list of “actions” to the DBMS
* includes “reads” and “writes”
* Ry(O): Reading an object O by transaction T
* W;(O): Writing an object O by transaction T
* also should specify Commit; (C;) and Abort; (A;)
* Tis omitted if the transaction is clear from the context

Assumptions

* Transactions communicate only through READ and
WRITE
* i.e. no exchange of message among them

* A database is a fixed collection of independent
objects
« i.e. objects are not added to or deleted from the
database
* this assumption can be relaxed
* (dynamic db/phantom problem later)

Schedule

* An actual or potential sequence for executing
actions as seen by the DBMS
* Alist of actions from a set of transactions
* includes READ, WRITE, ABORT, COMMIT
* Two actions from the same transaction T MUST
appear in the schedule in the same order that they
appearinT
* cannot reorder actions from a given transaction

Serial Schedule

« If the actions of different

R(A) transactions are not
W(A) interleaved
R(B) ¢ transactions are executed
() from start to finish one by
COMMIT one

R(A)

W(A)

R(B)

W(B)

COMMIT

Problems with a serial schedule

* The same motivation for concurrent executions, e.g.

* while one transaction is waiting for page 1/0 from disk, another
transaction could use the CPU
* reduces the time disks and processors are idle

* Increases system throughput
* average #transactions computed in a given time
* Also improves response time

* average time taken to complete a transaction

* since short transactions can be completed with long ones and do
not have to wait for them to finish

Scheduling Transactions

« Serial schedule: Schedule that does not interleave the actions

of different transactions

* Equivalent schedules: For any database state, the effect (on

the set of objects in the database) of executing the first

schedule is identical to the effect of executing the second

schedule

* Serializable schedule: A schedule that is equivalent to some

serial execution of the committed transactions

* Note: If each transaction preserves consistency, every serializable

schedule preserves consistency

2/26/19

Serializable Schedule

« If the effect on any consistent database instance is guaranteed to be identical to
that of “some” complete serial schedule for a set of “committed transactions”

* However, no guarantee on T1-> T2 or T2->T1

L@ R(A) R(A)
e, W(A) W(A)
R(B) R(A) R(A)
W(B) W(A) R(B)
COMMIT R(B) W(B)
R(A) W(B) W(A)
W(A) R(B) R(B)
R(B) W(B) W(B)
W(B) COMMIT COMMIT
COMMIT ~ commIT COMMIT
serial schedule serializable schedules

Anomalies with Interleaved Execution

* If two consistency-preserving transactions when
run interleaved on a consistent database might
leave it in inconsistent state

* Write-Read (WR)

* Read-Write (RW)
* Write-Write (WW)

* No conflict with RR if no write is involved

WR Conflict

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), Commit
R(B), W(B), Commit

‘ TL R(A), W(A),
T2: R(A), W(A), R(B), W(B), Commit

. Readdi,r}§ Uncommitted Data (WR Conflicts, “dirty
reads™):
* transaction T2 reads an object that has been modified by T1
but not yet committed
* or T2 reads an object from an inconsistent database state ?Iike
fund is being transferred between two accounts by T1 while T2
adds interests to both)

RW Conflict

T R(A), R(A), W(A), C
T2: R(A), W(A), C

* Unrepeatable Reads (RW Conflicts):
* T2 changes the value of an object A that has been read
by transaction T1, which is still in progress
* If T1 tries to read A again, it will get a different result
* Suppose two customers are trying to buy the last copy of
a book simultaneously

WW conflict

=L W), W(B),C
vl W(A), W(B), C

* Overwriting Uncommitted Data (WW Conflicts, “lost
update”):

* T2 overwrites the value of A, which has been modified by
T1, still in progress
* Suppose we need the salaries of two employees (A and B)
to be the same
* Tisets them to $1000
* T2 sets them to $2000

Schedules with Aborts

TI: R(A), W(A), Abort
T2 R(A), W(A) Commit

* Actions of aborted transactions have to be undone
completely

* may be impossible in some situations
* say T2 reads the fund from an account and adds interest
* T1aims to deposit money but aborts

« if T2 has not committed, we can “cascade aborts” by

aborting T2 as well
* if T2 has committed, we have an “unrecoverable schedule”

Recoverable Schedule

2/26/19

TI: R(A), W(A), Abort
T2: R(A), W(A), R(B), W(B), Commit

* Transaction commits if and only after all
transactions they read have committed
* avoids cascading aborts

ACID: Summary

A is a sequence of database operations
with the following properties ():

: Operations of a transaction are executed all-or-
nothing, and are never left “half-done”

: Assume all database constraints are
satisfied at the start of a transaction, they should remain
satisfied at the end of the transaction

: Transactions must behave as if they were
executed in complete isolation from each other
: If the DBMS crashes after a transaction
commits, all effects of the transaction must remain in
the database when DBMS comes back up

SQL transactions

* A transaction is automatically started when a user
executes an SQL statement

* Subsequent statements in the same session are
executed as part of this transaction

* Statements see changes made by earlier ones in the
same transaction

* Statements in other concurrently running transactions
do not
command commits the transaction
* Its effects are made final and visible to subsequent
transactions
command aborts the transaction
* Its effects are undone

Fine prints

* Schema operations (e.g., CREATE TABLE)
implicitly commit the current transaction
* Because it is often difficult to undo a schema operation

* Many DBMS support an feature,
which automatically commits every single
statement

* You can turn it on/off through the API
* For PostgreSQL:
* psql command-line processor turns it on by default

* You can turn it off at the psql prompt by typing:
\set AUTOCOMMIT 'off'

SQL isolation levels

* Strongest isolation level:
» Complete isolation

* Weaker isolation levels: ,

’
* Increase performance by eliminating overhead and
allowing higher degrees of concurrency
* Trade-off: sometimes you get the “wrong’” answer

READ UNCOMMITTED

* Canread “dirty” data

* Adataitemis dirty if it is written by an uncommitted
transaction

* Problem: What if the transaction that wrote the
dirty data eventually aborts?

* Example: wrong average

e -TIl: --T2:
UPDATE User
SET pop = 0.99
WHERE uid = 142; SELECT AVG(pop)
FROM User;
ROLLBACK;
COMMIT;

2/26/19

READ COMMITTED
* No dirty reads, but possible
* Reading the same data item twice can produce different
results

* Example: different averages

e --Tl: --T2:
SELECT AVG(pop)
FROM User;
UPDATE User
SET pop = 0.99
WHERE uid = 142;
COMMIT;
SELECT AVG(pop)
FROM User;
COMMIT;

REPEATABLE READ

* Reads are repeatable, but may see
* Example: different average (still!)

e --TIl: --T2:
SELECT AVG(pop)
FROM User;
INSERT INTO User
VALUES(789, Nelson',
10, 0.1);
COMMIT;
SELECT AVG(pop)
FROM User;
COMMIT;

Summary of SQL isolation levels

Isolation level/anomaly

Possible Possible Possible
Possible Possible
Possible

* Syntax: At the beginning of a transaction,

isolation_level [|]
* READ UNCOMMITTED can only be READ ONLY

* PostgreSQL defaults to

Transactions in programming

Using pyscopg2 as an example:

conn = psycopg2.connect(dbname="beers')

conn. (isolation_level='SERIALIZABLE',
ready_only=False,
autocommit=True)

« isolation_level defaults to READ COMMITTED
« read_only defaults to False
« autocommit defaults to False

* When autocommit is False, commit/abort current
transaction as follows:

conn. 0

conn. 0O

ANSI isolation levels are lock-based

* READ UNCOMMITTED
: lock, access, release immediately

* READ COMMITTED
: do not release write locks
until commit

* REPEATABLE READ
on all data items accessed

* SERIALIZABLE

to prevent insertion as well

Isolation levels not based on locks?

* Based on
* Used in Oracle, PostgreSQL, MS SQL Server, etc.
* How it works

* Transaction X performs its operations on a private
snapshot of the database taken at the start of X

* X can commit only if it does not write any data that
has been also written by a transaction committed
after the start of X

* Avoids all ANSI anomalies

* Butis equivalent to SERIALIZABLE
because of anomaly

Write skew example

* Constraint: combined balance A+ B > 0

+ A=100,B =100

* T,checks A + B - 200 = 0, and then proceeds to
withdraw 200 from A4

* T, checks A + B - 200 > 0, and then proceeds to
withdraw 200 from B

* Possible under snapshot isolation because the writes
(to A and to B) do not conflict

* ButA 4+ B = —200 < 0 afterwards!

@ To avoid write skew, when committing, ensure the
transaction didn’t any object others wrote and
committed after this transaction started

2/26/19

Bottom line

* Group reads and dependent writes into a
transaction in your applications
* E.g., enrolling a class, booking a ticket

* Anything less than SERIALABLE is potentially very
dangerous
* Use only when performance is critical
* READ ONLY makes weaker isolation levels a bit safer

