
2/26/19

1

SQL: Transactions
Introduction to Databases
CompSci 316 Spring 2019

Announcements (Tue., Feb. 26)

• Project Milestone #1 due tonight
• Please submit one report per group

• Homework 2 problems due on Thursday

Motivation: Concurrent Execution

• Concurrent execution of user programs is essential for good
DBMS performance.
• Disk accesses are frequent, and relatively slow
• it is important to keep the CPU busy by working on several user

programs concurrently
• short transactions may finish early if interleaved with long ones
• may increase system throughput (avg. #transactions per unit time) and

decrease response time (avg. time to complete a transaction)

• A user’s program may carry out many operations on the data
retrieved from the database
• but the DBMS is only concerned about what data is read/written

from/to the database

Transactions

• A transaction is the DBMS’s abstract view of a user program
• a sequence of reads and write
• the same program executed multiple times would be considered as

different transactions
• DBMS will enforce some ICs, depending on the ICs declared in

CREATE TABLE statements
• Beyond this, the DBMS does not really understand the semantics of

the data. (e.g., it does not understand how the interest on a bank
account is computed)

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Example
• Consider two transactions:

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

• Intuitively, the first transaction is transferring $100 from B’s account
to A’s account. The second is crediting both accounts with a 6%
interest payment

• There is no guarantee that T1 will execute before T2 or vice-versa, if
both are submitted together.

• However, the net effect must be equivalent to these two transactions
running serially in some order

Example

• Consider a possible interleaving (schedule):

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

v This is OK. But what about:
T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

v The DBMS’s view of the second schedule:
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

2/26/19

2

Commit and Abort

• A transaction might commit after completing all its
actions
• or it could abort (or be aborted by the DBMS) after

executing some actions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Concurrency Control and Recovery

• Concurrency Control
• (Multiple) users submit (multiple) transactions
• Concurrency is achieved by the DBMS, which interleaves actions

(reads/writes of DB objects) of various transactions
• user should think of each transaction as executing by itself one-at-a-time
• The DBMS needs to handle concurrent executions

• Recovery
• Due to crashes, there can be partial transactions
• DBMS needs to ensure that they are not visible to other transactions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

ACID Properties

• Atomicity
• Consistency
• Isolation
• Durability

Atomicity

• A user can think of a transaction as always executing
all its actions in one step, or not executing any
actions at all
• Users do not have to worry about the effect of incomplete

transactions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Consistency

• Each transaction, when run by itself with no concurrent
execution of other actions, must preserve the consistency
of the database
• e.g. if you transfer money from the savings account to the checking

account, the total amount still remains the same

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Isolation

• A user should be able to understand a transaction
without considering the effect of any other
concurrently running transaction
• even if the DBMS interleaves their actions
• transaction are “isolated or protected” from other

transactions

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

2/26/19

3

Durability

• Once the DBMS informs the user that a
transaction has been successfully completed,
its effect should persist
• even if the system crashes before all its changes

are reflected on disk

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Next, how we maintain all these four properties
But, in detail later

Ensuring Consistency

• e.g. Money debit and credit between accounts
• User’s responsibility to maintain the integrity

constraints
• DBMS may not be able to catch such errors in user

program’s logic
• e.g. if the credit is (debit – 1)

• However, the DBMS may be in inconsistent state
“during a transaction” between actions
• which is ok, but it should leave the database at a

consistent state when it commits or aborts
• Database consistency follows from transaction

consistency, isolation, and atomicity

Ensuring Isolation

• DBMS guarantees isolation (later, how)
• If T1 and T2 are executed concurrently, either the

effect would be T1->T2 or T2->T1 (and from a
consistent state to a consistent state)
• But DBMS provides no guarantee on which of these

order is chosen
• Often ensured by “locks” but there are other

methods too

Ensuring Atomicity

• Transactions can be incomplete due to several
reasons
• Aborted (terminated) by the DBMS because of some

anomalies during execution
• in that case automatically restarted and executed anew

• The system may crash (say no power supply)
• A transaction may decide to abort itself encountering an

unexpected situation
• e.g. read an unexpected data value or unable to access disks

Ensuring Atomicity

• A transaction interrupted in the middle can leave
the database in an inconsistent state
• DBMS has to remove the effects of partial

transactions from the database
• DBMS ensures atomicity by “undoing” the actions

of incomplete transactions
• DBMS maintains a “log” of all changes to do so

Ensuring Durability

• The log also ensures durability
• If the system crashes before the changes made by a

completed transactions are written to the disk, the
log is used to remember and restore these changes
when the system restarts
• “recovery manager” will be discussed later
• takes care of atomicity and durability

2/26/19

4

Notations

• Transaction is a list of “actions” to the DBMS
• includes “reads” and “writes”
• RT(O): Reading an object O by transaction T
• WT(O): Writing an object O by transaction T
• also should specify CommitT (CT) and AbortT (AT)
• T is omitted if the transaction is clear from the context

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

Assumptions

• Transactions communicate only through READ and
WRITE
• i.e. no exchange of message among them

• A database is a fixed collection of independent
objects
• i.e. objects are not added to or deleted from the

database
• this assumption can be relaxed

• (dynamic db/phantom problem later)

Schedule

• An actual or potential sequence for executing
actions as seen by the DBMS
• A list of actions from a set of transactions
• includes READ, WRITE, ABORT, COMMIT

• Two actions from the same transaction T MUST
appear in the schedule in the same order that they
appear in T
• cannot reorder actions from a given transaction

Serial Schedule

• If the actions of different
transactions are not
interleaved
• transactions are executed

from start to finish one by
one

T1 T2

R(A)

W(A)

R(B)

W(B)

COMMIT

R(A)

W(A)

R(B)

W(B)

COMMIT

Problems with a serial schedule
• The same motivation for concurrent executions, e.g.

• while one transaction is waiting for page I/O from disk, another
transaction could use the CPU

• reduces the time disks and processors are idle

• Increases system throughput
• average #transactions computed in a given time

• Also improves response time
• average time taken to complete a transaction
• since short transactions can be completed with long ones and do

not have to wait for them to finish

Scheduling Transactions

• Serial schedule: Schedule that does not interleave the actions
of different transactions

• Equivalent schedules: For any database state, the effect (on
the set of objects in the database) of executing the first
schedule is identical to the effect of executing the second
schedule

• Serializable schedule: A schedule that is equivalent to some
serial execution of the committed transactions
• Note: If each transaction preserves consistency, every serializable

schedule preserves consistency

2/26/19

5

Serializable Schedule
• If the effect on any consistent database instance is guaranteed to be identical to

that of “some” complete serial schedule for a set of “committed transactions”

• However, no guarantee on T1-> T2 or T2 -> T1

T1 T2

R(A)

W(A)

R(B)

W(B)

COMMIT

R(A)

W(A)

R(B)

W(B)

COMMIT

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

COMMIT

COMMIT

serial schedule serializable schedules

T1 T2

R(A)

W(A)

R(A)

R(B)

W(B)

W(A)

R(B)

W(B)

COMMIT

COMMIT

Anomalies with Interleaved Execution

• If two consistency-preserving transactions when
run interleaved on a consistent database might
leave it in inconsistent state

• Write-Read (WR)
• Read-Write (RW)
• Write-Write (WW)

• No conflict with RR if no write is involved

WR Conflict

• Reading Uncommitted Data (WR Conflicts, “dirty
reads”):
• transaction T2 reads an object that has been modified by T1

but not yet committed
• or T2 reads an object from an inconsistent database state (like

fund is being transferred between two accounts by T1 while T2
adds interests to both)

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), Commit

T1: R(A), W(A), R(B), W(B), Commit
T2: R(A), W(A), R(B), W(B), Commit

RW Conflict

• Unrepeatable Reads (RW Conflicts):
• T2 changes the value of an object A that has been read

by transaction T1, which is still in progress
• If T1 tries to read A again, it will get a different result
• Suppose two customers are trying to buy the last copy of

a book simultaneously

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

WW conflict

• Overwriting Uncommitted Data (WW Conflicts, “lost
update”):
• T2 overwrites the value of A, which has been modified by

T1, still in progress
• Suppose we need the salaries of two employees (A and B)

to be the same
• T1 sets them to $1000
• T2 sets them to $2000

T1: W(A), W(B), C
T2: W(A), W(B), C

Schedules with Aborts

• Actions of aborted transactions have to be undone
completely
• may be impossible in some situations

• say T2 reads the fund from an account and adds interest
• T1 aims to deposit money but aborts

• if T2 has not committed, we can “cascade aborts” by
aborting T2 as well
• if T2 has committed, we have an “unrecoverable schedule”

T1: R(A), W(A), Abort
T2: R(A), W(A) Commit

2/26/19

6

Recoverable Schedule

• Transaction commits if and only after all
transactions they read have committed
• avoids cascading aborts

T1: R(A), W(A), Abort
T2: R(A), W(A), R(B), W(B), Commit

ACID: Summary

• A transaction is a sequence of database operations
with the following properties (ACID):
• Atomic: Operations of a transaction are executed all-or-

nothing, and are never left “half-done”
• Consistency: Assume all database constraints are

satisfied at the start of a transaction, they should remain
satisfied at the end of the transaction
• Isolation: Transactions must behave as if they were

executed in complete isolation from each other
• Durability: If the DBMS crashes after a transaction

commits, all effects of the transaction must remain in
the database when DBMS comes back up

SQL transactions

• A transaction is automatically started when a user
executes an SQL statement
• Subsequent statements in the same session are

executed as part of this transaction
• Statements see changes made by earlier ones in the

same transaction
• Statements in other concurrently running transactions

do not
• COMMIT command commits the transaction
• Its effects are made final and visible to subsequent

transactions
• ROLLBACK command aborts the transaction
• Its effects are undone

Fine prints

• Schema operations (e.g., CREATE TABLE)
implicitly commit the current transaction
• Because it is often difficult to undo a schema operation

• Many DBMS support an AUTOCOMMIT feature,
which automatically commits every single
statement
• You can turn it on/off through the API
• For PostgreSQL:

• psql command-line processor turns it on by default
• You can turn it off at the psql prompt by typing:

\set AUTOCOMMIT 'off'

SQL isolation levels

• Strongest isolation level: SERIALIZABLE
• Complete isolation

• Weaker isolation levels: REPEATABLE READ,
READ COMMITTED, READ UNCOMMITTED
• Increase performance by eliminating overhead and

allowing higher degrees of concurrency
• Trade-off: sometimes you get the “wrong” answer

READ UNCOMMITTED
• Can read “dirty” data
• A data item is dirty if it is written by an uncommitted

transaction

• Problem: What if the transaction that wrote the
dirty data eventually aborts?
• Example: wrong average
• -- T1: -- T2:

UPDATE User
SET pop = 0.99
WHERE uid = 142; SELECT AVG(pop)

FROM User;
ROLLBACK;

COMMIT;

2/26/19

7

READ COMMITTED
• No dirty reads, but non-repeatable reads possible
• Reading the same data item twice can produce different

results

• Example: different averages
• -- T1: -- T2:

SELECT AVG(pop)
FROM User;

UPDATE User
SET pop = 0.99
WHERE uid = 142;
COMMIT;

SELECT AVG(pop)
FROM User;

COMMIT;

REPEATABLE READ
• Reads are repeatable, but may see phantoms
• Example: different average (still!)
• -- T1: -- T2:

SELECT AVG(pop)
FROM User;

INSERT INTO User
VALUES(789, 'Nelson',

10, 0.1);
COMMIT;

SELECT AVG(pop)
FROM User;

COMMIT;

Summary of SQL isolation levels

• Syntax: At the beginning of a transaction,
SET TRANSACTION ISOLATION LEVEL
isolation_level [READ ONLY | READ WRITE];
• READ UNCOMMITTED can only be READ ONLY

• PostgreSQL defaults to READ COMMITTED

Isolation level/anomaly Dirty reads Non-repeatable reads Phantoms

READ
UNCOMMITTED

Possible Possible Possible

READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible Impossible Possible

SERIALIZABLE Impossible Impossible Impossible

Transactions in programming

Using pyscopg2 as an example:
conn = psycopg2.connect(dbname='beers')
conn.set_session(isolation_level='SERIALIZABLE',

ready_only=False,
autocommit=True)

• isolation_level defaults to READ COMMITTED
• read_only defaults to False
• autocommit defaults to False

• When autocommit is False, commit/abort current
transaction as follows:

conn.commit()
conn.rollback()

ANSI isolation levels are lock-based

• READ UNCOMMITTED
• Short-duration locks: lock, access, release immediately

• READ COMMITTED
• Long-duration write locks: do not release write locks

until commit

• REPEATABLE READ
• Long-duration locks on all data items accessed

• SERIALIZABLE
• Lock ranges to prevent insertion as well

Isolation levels not based on locks?

Snapshot isolation in Oracle
• Based on multiversion concurrency control
• Used in Oracle, PostgreSQL, MS SQL Server, etc.

• How it works
• Transaction 𝑋 performs its operations on a private

snapshot of the database taken at the start of 𝑋
• 𝑋 can commit only if it does not write any data that

has been also written by a transaction committed
after the start of 𝑋

• Avoids all ANSI anomalies
• But is NOT equivalent to SERIALIZABLE

because of write skew anomaly

2/26/19

8

Write skew example
• Constraint: combined balance 𝐴 + 𝐵 ≥ 0
• 𝐴 = 100, 𝐵 = 100
• T1 checks 𝐴 + 𝐵	– 	200 ≥ 0, and then proceeds to

withdraw 200 from 𝐴
• T2 checks 𝐴 + 𝐵	– 	200 ≥ 0, and then proceeds to

withdraw 200 from 𝐵
• Possible under snapshot isolation because the writes

(to 𝐴 and to 𝐵) do not conflict
• But 𝐴 + 𝐵 = −200 < 0 afterwards!

☞To avoid write skew, when committing, ensure the
transaction didn’t read any object others wrote and
committed after this transaction started

Bottom line

• Group reads and dependent writes into a
transaction in your applications
• E.g., enrolling a class, booking a ticket

• Anything less than SERIALABLE is potentially very
dangerous
• Use only when performance is critical
• READ ONLY makes weaker isolation levels a bit safer

