2/28/19

XML and DTD

Introduction to Databases
CompSci 316 Spring 2019

E. DUKE
COMPUTER SCIENCE

Announcements (Thu. Feb. 28)
due today (except 1 &2)
to be assigned soon

feedback to be emailed by
next class

Structured vs. unstructured data

* Relational databases are highly structured

* All dataresides in tables

* You must define schema before entering any data

* Every row confirms to the table schema

* Changing the schema is hard and may break many things
* Texts are highly unstructured

* Datais free-form

* There is no pre-defined schema, and it’s hard to

define any schema
* Readers need to infer structures and meanings

What’s in between these two extremes?

Sudeepa Roy

Semi-structured data

* Observation: most data have some structure, e.g.:
* Book: chapters, sections, titles, paragraphs, references,
index, etc.

* Item for sale: name, picture, price (range), ratings,
promotions, etc.
* Web page: HTML

* |deas:
* Ensure data is “well-formatted”
* If needed, ensure data is also “well-structured”
* But make it easy to define and extend this structure
* Make data “self-describing”

SQL vS. NOSQL HOW TO WRITE A cV

* SQUL’s rigidity in face of semi-
structured data is one of the
reasons behind the rise of

(some) NoSQL systems

* NoSQL has other motivations, H R\ Al
which we hope to get to in a later
part of this course

DOESN'T
MATTER.

Leverage the NoSQL boom

Our roadmap thru the NoSQL land

y="1958-10-13" gender="F" id="C00012'

03TO0:00:002),
STO0:00:002°),

2/28/19

HTML: language of the Web

<h1>Bibliography</h1>) Mozito Firefox |
<p><i>Foundations of Databases</i>,
Abiteboul, Hull, and Vianu Bibliography

Addison Wesley, 1995

<p>... Fowndations of Databases, Abiteboul, Hull, and Vianu

Addison Wesley, 1995

Data on the Web, Abiteboul, Buneman, and Suciu
Morgan Kaufmann, 1999

* It’s mostly a “formatting” language

* It mixes presentation and content
* Hard to change presentation (say, for different displays)
* Hard to extract content

XML: eXtensible Markup Language

ibliography>
<book>

<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author> Foundations of Databases, Abiteboul, Hull, and Vianu
<publisher>Addison Wesley</publisher> Addison Wesle, 1995

<year>1995</year>

Bibliography

Data on the Web, Abiteboul, Buneman, and Suciu
</book> Morgan Kaufimann, 1999
<book>...</book>

<bibliography>

* Text-based

* Capture data (content), not presentation

* Data self-describes its structure
* Names and nesting of tags have meanings!

Other nice features of XML

: Just like HTML, you can ship XML data
across platforms

* Relational data requires heavy-weight API’s
: You can represent any information
(structured, semi-structured, documents, ...)
* Relational data is best suited for structured data
: Since data describes itself, you can
change the schema easily
* Relational schema is rigid and difficult to change

<bibliography>
<book ISBN="ISBN-10" price="80.00">

M <title>Foundations of Databases</title>
terminolo gy S mihor AbliboslSaumters
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>

names: book, title, ... S,
: <book>, <title>, ...
: </book>, </title>, ...

* An is enclosed by a pair of start and end
tags: <book>...</book>
* Elements can be nested:
<book>...<title>...</title>...</book>
* Empty elements: <is_textbook></is_textbook>
* Can be abbreviated: <is_textbook/>
* Elements can also have
<book ISBN="..." price="80.00">

« Ordering generally matters, except for attributes

Well-formed XML documents

A XML document

* Follows XML lexical conventions
* Wrong: <section>We show that x < 0...</section>
* Right: <section>We show that x &It; 0...</section>
« Other special entities: > becomes and & becomes

* Contains a single root element
* Has properly matched tags and properly nested
elements
* Right: <section>...<subsection>...</subsection>...</section>
* Wrong: <section>...<subsection>...</section>...</subsection>

A tree representation

Foundations
of Databases

Abiteboul

Introduction In this
section we
introduce the
notion of
semi-
structured
data

2/28/19

More XML features

* Processing instructions for apps: <? ... 7>

* An XML file typically starts with a version declaration using this
syntax: <?xml version="1.0"?>

* Comments: <!-- Comments here -->
* CDATA section: <!|[CDATA[Tags: <book>,...]]>

* ID’s and references

* ID value must start with a non-digit
<person id="012"><name>Homer</name>...</person>

<person id ><name>Marge</name>....</person>
<person id="056" father="012" mother="034">
<name>Bart</name>...
</person>...
* Namespaces allow external schemas and qualified names
<myCitationStyle:book xmlns:myCitationStyle="http://.../mySchema">
<myCitationStyle:title>...</myCitationSiyle:title>
<myCitationStyle:author>...</myCitationStyle:author>...

</book>

* And more...

Now for some

04ipg

more structure...

Valid XML documents

* Avalid XML document conforms to a
Document Type Definition (DTD)
* ADTD is optional

* A DTD specifies a grammar for the document
« Constraints on structures and values of elements, attributes, etc.

* Example

<!DOCTYPE bibliography [
<IELEMENT bibliography (book+)>
<IELEMENT book (title, author*, publisher?, year?, section*)>
<!ATTLIST book ISBN ID #REQUIRED>
<!ATTLIST book price CDATA #IMPLIED>
<!ELEMENT title (fPCDATA)>
<!IELEMENT author (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT i (#PCDATA)>
<!ELEMENT content (#PCDATA]i)*>
<!ELEMENT section (title, content?, section*)>

DTD explained

<IDOCTYPE bibliography [
bibliography is the root element of the document
<IELEMENT bibliography (book+)> One or more
bibliography consists of a sequence of one or more book elements
!ELEMENT book (title, author*, publisher?, year?, section*)>
—— Zero or one
Zero or more
book consists of a title, zero or more authors,
an optional publisher, and zero or more section’s, in sequence
!ATTLIST book ISBN ID #REQUIRED>
L book has a required ISBN attribute which is a unique identifier
<IATTLIST book price CDATA #IMPLIED>
book has an optional (IMPLIED)
price attribute which contains <bibliography>
character data <book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases<fitle>
<author>Abiteboul</author>

<author>Hull</author>

Other attribute types include <author>Vianu</author>

<publisher>Addison Wesley</publisher>
IDRF_FT (reference to an ID)-, Sears1995<years

IDREFS (space-separated list of references), /book>...

enumerated list, etc. <fbibliography>

DTD explained (cont’d)

<!ELEMENT title (#PCDATA)> PCDATA is text that will be parsed
<!ELEMENT author (#PCDATA). * < etc. will be parsed as entities

<!ELEMENT publisher (#PCDATA)> + Usea CDATA section to include text verbatim
<!ELEMENT year (#PCDATA)>

!ELEMENT i (#PCDATA)>

author, publisher, year, and i contain parsed characte ta
!ELEMENT content (#PCDATA[i)*>
content contains mixed content: text optionally interspersed with i elements

<!ELEMENT section (title, content?, s
Recursive declaration:

tion*)>

Each section begins with a title,

followed by an optional content, <section><title>Introduction</title>

and then zero or more <content>1n this section we introduce
. the notion of <i>semi-structured data</i>....
(sub) section’s <fcontent>

<section><title>XML<fitle>
<content>XML stands for...</content>
</section>
<section><title>DTD<title>
<section><title>Definition</title>
<content>DTD stands for...</content>
</section>
<section><itle>Usage</title>
<content>You can use DTD to...</content>
<Isection>
</section>
<Isection>

2/28/19

Using DTD

* DTD can be included in the XML source file

+ <?xml version="1.0"?>
IDOCTYPE bibliogra

<bibliography>

</bibliography>

* DTD can be external
+ <?xml version="1.0"?>
IDOCTYPE bibliograpl itds/bib.dtd
<bibliography>

</bibliography>
+ <?xml version="1.0"?>
'DOCTYPE html 3C//DTD XHTML 1.0 Strict//EN
http 3 TR/xhtml1/DTD/xhtml 1 -strict.dtd

</html>

Annoyance: content grammar

* Consider this declaration:

<!ELEMENT pub-venue
((name, address, month, year) |
(name, volume, number, year))>

° Ul” means “Or”
* Syntactically legal, but won’t work
* Because of SGML compatibility issues

* When looking at name, a parser would not know which
way to go without looking further ahead

* Requirement: content declaration must be

« Can we rewrite it into an equivalent, deterministic one?

* Also, you cannot nest mixed content declarations
e lllegal: <IELEMENT Section (title, (#PCDATA[)*, section*)>

Annoyance: element name clash

* Suppose we want to represent book titles and
section titles differently
* Book titles are pure text: (#PCDATA)
* Section titles can have formatting tags:
(#PCDATA [i|bjmath)*
* But DTD only allows one title declaration!

* Workaround: rename as book-title and section-title?
* Not nice—why can’t we just infer a title’s context?

Annoyance: lack of type support

* Too few attribute types: string (CDATA), token (e.g.,
ID, IDREF), enumeration (e.g., (red|green|blue))
* What about integer, float, date, etc.?

* ID not typed
* No two elements can have the same id, even if they have
different types (e.g., book vs. section)
» Difficult to reuse complex structure definitions
* E.g.: already defined element E1 as (blah, bleh, foo?, bar*,
...); want to define E2 to have the same structure
in DTD provide a workaround
E.struct '(blah, bleh, foo?, bar*, ...)"

¢ <!ELEMENT E1 %E.struct;>
* <!ELEMENT E2 %E.struct;>

* Something less “hacky’”?

Want even more
structure support?

201211 509deb91920762452179065 jpa

XML Schema

* A more powerful way of defining the structure and
constraining the contents of XML documents

* Supports a rich set of types and user-defined
types/structures
* Supports notions of keys and foreign keys

* An XML Schema definition is itself an XML
document
* Typically stored as a standalone .xsd file
* XML (data) documents refer to external .xsd files

2/28/19

Why use DTD or XML Schema?

* Benefits of not using them
* Unstructured data is easy to represent
» Overhead of validation is avoided

* Benefits of using them
* Serve as schema for the XML data
* Guards against errors
* Helps with processing
* Facilitate information exchange

* People can agree to use a common DTD or XML Schema to
exchange data (e.g., XHTML)

XML versus relational data

Relational data XML data

* Schemais always fixed in * Well-formed XML does not
advance and difficult to require predefined, fixed
change schema

* Simple, flat table structures * Nested structure;
ID/IDREF(S) permit arbitrary
graphs

* Ordering forced by
document format; may or
may not be important

* Exchange is problematic * Designed for easy exchange

* “Native” support in all * Often implemented as an
serious commercial DBMS ~ “add-on” on top of relations

* Ordering of rows and
columns is unimportant

Case study

* Design an XML document representing cities,
counties, and states
* For states, record name and capital (city)
* For counties, record name, area, and location (state)
* For cities, record name, population, and location (county
and state)
* Assume the following:
* Names of states are unique
* Names of counties are only unique within a state
* Names of cities are only unique within a county
* Acity is always located in a single county
* A county is always located in a single state

A possible design

