
JSON & MongoDB
Introduction to Databases
CompSci 316 Spring 2019

Announcements (Thu. Mar. 7)

• Homework #3 probs 1& 2 released
• Due in two weeks

• Project milestone #2 due in two weeks

2

JSON (JavaScript Object Notation)

• Very lightweight data exchange format
• Much less verbose and easier to parse than XML
• Increasingly used for data exchange over Web: many

Web APIs use JSON to return responses/results

• Based on JavaScript
• Conforms to JavaScript object/array syntax—you can

directly manipulate JSON representations in JavaScript

• But it has gained widespread support by all
programming languages

3

Example JSON vs. XML
4

<bibliography>
<book ISBN="ISBN-10" price="80.00">
<title>Foundations of Databases</title>
<author>Abiteboul</author>
<author>Hull</author>
<author>Vianu</author>
<publisher>Addison Wesley</publisher>
<year>1995</year>
<section>
<title>Section 1</title>
<section><title>Section 1.1</title></section>
<section><title>Section 1.2</title></section>

</section>
<section>
<title>Section 2</title>

</section>
</book>

</bibliography>

[
{ "ISBN": "ISBN-10",
"price": 80.00,
"title": "Foundations of Databases",
"authors": ["Abiteboul", "Hull", "Vianu"],
"publisher": "Addison Wesley",
"year": 1995,
"sections": [
{ "title": "Section 1",
"sections": [
{ "title": "Section 1.1” },
{ "title": "Section 1.2” }

]
},
{ "title": "Section 2" }

]
}, … …

]

JSON data model

• Two basic constructs
• Array: comma-separated list of “things” enclosed by brackets

• Order is important
• Object: comma-separated set of pairs enclosed by braces; each pair

consists of an attribute name (string) and a value (any “thing”)
• Order is unimportant
• Attribute names “should” be unique within an object

• Simple types: numbers, strings (in double quotes), and
special values “true”, “false”, and “null”
• Thing = a simple value or an array or an object

5[
{ "ISBN": "ISBN-10",
"price": 80.00,
"title": "Foundations of Databases",
"authors": ["Abiteboul", "Hull", "Vianu"],
"publisher": "Addison Wesley",
"year": 1995,
"sections": [
{ "title": "Section 1",
"sections": [
{ "title": "Section 1.1” },
{ "title": "Section 1.2” }

]
},
{ "title": "Section 2" }

]
}, … …

]

JSON Schema

• Recall the advantages of having a schema
• Defines a structure, helps catch errors, facilitates

exchange/automation, informs optimization…

• Just like relational data and
XML, JSON is getting a
schema standard too!
• Up and coming, but still a

draft at this stage

6

{
"definitions": {
"sections": {
"type": "array",
"description": "Sections.",
"sections": {"$ref":"#definitions/sections"},
"minItems": 0

}
},
"title": "Book",
"type": "object",
"properties": {
"ISBN": {
"type": "string",
"description": "The book's ISBN number."

},
"price": {
"type": "number",
"description": "The book's price.",
"exclusiveMinimum": 0

},
... ...
"sections": {"$ref":"#definitions/sections"},
}

}
... ...

}

MongoDB

• One of the “NoSQL” poster children
• Started in 2007
• Targeting semi-structured data in JSON
• Designed to be easy to “scale out”
• Good support for indexing, partitioning, replication
• Nice integration in Web development stacks
• Not-so-great support for joins (or complex queries)

or transactions

7

Inside a MongoDB database

• Database = a number of “collections”
• Collection = a list of “documents”
• Document = a JSON object
• Must have an _id attribute whose value can uniquely

identify a document within the collection

☞In other words, a database has collections of
similarly structured “documents”
• Much like tables of records, as opposed to one big XML

document that contains all data

8

Querying MongoDB

• find() and sort()
• Analogous to single-table selection/projection/sort

• “Aggregation” pipeline
• With “stages” analogous to relational operators
• Join, group-by, restructuring, etc.

• MapReduce:
• Supports user-defined functions
• We will save this topic until later in this course

☞We won’t cover syntax for creating/updating
MongoDB databases in lecture
• See “Help” of the course website and read the manuals!

9

Key features to look out for

• Queries written as JSON objects themselves!
• Natural in some cases (e.g., for specifying conditions on

subsets of attributes), but awkward/misleading in others

• Simple path expressions using the “dot notation”
• Analogous to XPath “/”

• Arrays within objects
• Work on nested array directly using constructs like dot-

index notation, $elemMatch, $map, and $filter
• Or “unnest” an array so its elements get paired with the

owner object in turn for pipeline processing
• A fundamental concept in working with nested data

10

Basic MongoDB find()
• All books

db.bib.find()

• Books with title “Foundations of Databases”
db.bib.find({ title: "Foundations of Databases" })

• Books whose title contains “Database” or “database”
and whose price is lower than $50
db.bib.find({ title:/[dD]atabase/, price:{$lt:50} })

• Books with price between $70 and $100
db.bib.find({$and:[{price:{$gte:70}}, {price:{$lte:100}}]})
• By the way, why wouldn’t the following work?

db.bib.find({ price:{$gte:70}, price:{$lte:100} })

• Books authored by Widom
db.bib.find({ authors: "Widom" })
• Note the implicit existential quantification

11

• Assume db refers to the database and
db.bib refers to the collection of books

• Add .toArray() at end to get pretty output
• You need to do this for Homework 3!

No general “twig” matching!

• Suppose for a moment publisher is an object itself,
with attributes name, state, and country
• The following query won’t get you database books

by US publishers:
db.bib.find({ title: /[dD]atabase/,

publisher: { country: "US" } })
• Instead, the condition on publisher is satisfied only if it is

an object with exactly one attribute, and this attribute
must be named country and has value "US"
• What happens is that MongoDB checks the equality

against {country: "US"} as an object, not as a pattern!

12

More on nested structures
• Dot notation for XPath-like path expressions
• Books where some subsection title contains “1.1”

db.bib.find({ "sections.sections.title": /1\.1/ })
• Note we that need to quote the expression
• Again, if the expression returns multiple things, the condition

only needs to hold for at least one of them

• Use $elemMatch to ensure that the same array
element satisfies multiple conditions, e.g.:
db.bib.find({ sections: { $elemMatch: {

title: /Section/,
"sections.title": /1\.1/

}}})

• Dot notation for specifying array elements
• Books whose first author is Abiteboul

db.bib.find({ "authors.0": "Abiteboul" })
• Note 0-based indexing; again, need to quote the expression

13

find() with projection and sorting

• List just the book prices and nothing else
db.bib.find({ price: { $exists: true } },

{ _id: 0, price: 1 })
• The (optional) second argument to find() specifies what

to project: 1 means to return, 0 means to omit
• _id is returned by default unless otherwise specified

• List books but not subsections, ordered by ISBN
db.bib.find({}, {"sections.sections":0}).sort({ISBN:1})
• Output from find() is further sorted by sort() , where 1/-1

mean ascending/descending order

☞“Aggregation pipelines” (next) are better suited
for constructing more complex output

14

MongoDB aggregation pipeline
• Idea: think of a query as performing a sequence of

“stages,” each transforming an input sequence of
JSON objects to an output sequence of JSON objects
• “Aggregation” is a misnomer: there are all kinds of

stages
• Selection ($match), projection ($project), sorting ($sort)

• Much of which find() and sort() already do
• Computing/adding attributes with generalized projection

($project/$addFields), unnesting embedded arrays
($unwind), and restructuring output ($replaceRoot)
• Operators to transform/filter arrays ($map/$filter)

• Join ($lookup)
• Grouping and aggregation ($group)

• Operators to aggregate (e.g., $sum) or collect into an array ($push)

15

The congress MongoDB database

• As in your Homework 3, Problem 3
• Two collections, people and committees
• Each object in people is a legislator

• roles = array of objects
• Each object in committees is a committee

• members = array of objects
• subcommittees = an array of subcommittee objects, each with its

own members array
• Each member object’s id field references a legislator _id

16

17[
{

"_id" : "B000944",
"birthday" : ISODate("1952-11-09T00:00:00Z"),
"gender" : "M",
"name" : "Sherrod Brown",
"roles" : [
{
"district" : 13,
"enddate" : ISODate("1995-01-03T00:00:00Z"),
"party" : "Democrat",
"startdate" : ISODate("1993-01-05T00:00:00Z"),
"state" : "OH",
"type" : "rep"

},
{
"district" : 13,
"enddate" : ISODate("1997-01-03T00:00:00Z"),
"party" : "Democrat",
"startdate" : ISODate("1995-01-04T00:00:00Z"),
"state" : "OH",
"type" : "rep"

}, … …
]

},
… …

]

[
{
"_id" : "HSAG",
"displayname" : "House Committee on Agriculture",
"type" : "house",
"members" : [
{
"id" : "C001062",
"role" : "Chair"

},
{
"id" : "G000289"

}, … …
],
"subcommittees" : [
{
"code" : "15",
"displayname" : "Conservation and Forestry",
"members" : [
{
"id" : "L000491",
"role" : "Chair"

},
{
"id" : "T000467"

}, … …
]

}, … …
]

},
… …

]

Selection/projection/sorting

Find Republican legislators, output only their name
and gender, sort by name

db.people.aggregate([
{ $match: {

"roles.party": "Republican”
} },
{ $project: {

_id: false,
name: true,
gender: true

} },
{ $sort: {

name: 1
} }

])

18

• aggregate() takes an array of stages
• Note again quoting the dot natation
• Note again the semantics of comparing a

list of values: i.e., the query finds
legislators who have ever served roles as
Republicans

Generalized projection
Find Republican legislators, output their name, gender,
and roles as an array of types (sen or rep)

db.people.aggregate([
{ $match: {

"roles.party": "Republican"
} },
{ $addFields: {

compact_roles: {
$map: { input: "$roles",

as: "role",
in: "$$role.type" }

}
} },
{ $project: {

_id: false,
name: true,
gender: true,
roles: "$compact_roles"

} }
])

19

• Use “ : "$xxx" ” to tell MongoDB to
interpret xxx as a field in the “current”
object instead of just a string literal

• In $map, as defines a new variable to
loop over elements in the input array

• For each input element, $map
computes the in expression and
appends its value to the output array
• Use “ : "$$xxx" ” to tell MongoDB

that xxx is a new variable created
during execution (as opposed to a
field in the current object)

Unnesting and restructuring

Create a list of subcommittees: for each, simply
display its name and the name of the committee it
belongs to

db.committees.aggregate([
{ $unwind: "$subcommittees" },
{ $replaceRoot: { newRoot: {

committee: "$displayname",
subcommittee: "$subcommittees.displayname”

} } }
])

20

For each input committee, $unwind loops over its
subcommittees array, one element at a time, and outputs a
copy of the committee object, with its subcommittees value
replaced with this single element

Join
For each committee (ignore its subcommittees),
display its name and the name of its chair

db.committees.aggregate([
{ $addFields: {

chair_member: { $filter: {
input: "$members",
as: "member",
cond: { $eq: ["$$member.role",

"Chairman"] }
} }

} },
{ $lookup: {

from: "people",
localField: "chair_member.id",
foreignField: "_id",
as: "chair_person"

} },
{ $project: {

_id: false,
name: "$displayname",
chair: { $arrayElemAt:["$chair_person.name",0] }

} },
])

21

• In $lookup, localField specifies the
attribute in the current object whose value
will be used for lookup

• from specifies the collection in which to
look for joining objects; foreignField
specifies the attribute therein to be joined

• $lookup creates an attribute in the current
object with the name specified by as, and
sets it value to an array holding all joining
objects

☞ Non-equality joins are also possible, with
more complex syntax

$arrayElemAt extracts an array element by its index
("chair_person.0.name" doesn’t work here)

• $filter filters input array according to cond and
produces and output array

Grouping and aggregation

• Count legislators by gender, and list the names of
legislators for each gender

db.people.aggregate([
{ $group: {

_id: "$gender",
count: { $sum: 1 },
list: { $push: "$name" }

} }
])

22

• The required _id specifies the grouping expression,
whose value becomes the identifying attribute of output
objects (one per group)

• Other attributes hold aggregate values, computed using
aggregation operators
• $sum compute a total by adding each input
• $push creates an array by appending each input

Summary and discussion
• JSON is like much more lightweight version of XML

• But perhaps not as good for mixed contents

• Writing queries JSON is sometimes convenient, but
confusing in many situations
• Query as as pipeline: less declarative, but arguably easier to

implement (especially to parallelize)
• Nested structures requires more query constructs

• $unwind stage, $elemMatch/$map/$filter/$push/$arrayElemAt operators,
etc.

• Distinction between the top-level and nested arrays is annoying
• E.g., $match stage and $filter operator basically do the same thing
• XQuery is much nicer in this regard (with ability to nest queries in return)

☞There is actually XQuery-like language for JSON called
“JSONiq,” but it remains less known

23

