JSON & MongoDB

Introduction to Databases
CompSci 316 Spring 2019

DUKE

COMPUTER SCIENCE

|

Announcements (Thu. Mar. 7)

probs 1& 2 released
* Due in two weeks

due in two weeks

JSON (JavaScript Object Notation)

* Very lightweight data exchange format
* Much less verbose and easier to parse than XML

* Increasingly used for data exchange over Web: many
Web APIs use JSON to return responses/results

* Based on JavaScript

* Conforms to JavaScript object/array syntax—you can
directly manipulate JSON representations in JavaScript

* But it has gained widespread support by all
programming languages N

JSON

Example JSON vs. XML

"ISBN": "ISBN-10",
"price": 80.00,
"title": "Foundations of Databases",

"authors": | "Abiteboul", "Hull", "Vianu" |,

"publisher": "Addison Wesley",
"year": 1995,
"sections":
"title": "Section 1",
"sections":
"title": "Section 1.17 |,
"title": "Section 1.2

"title": "Section 2"

<bibliography>

<book >
<title> </title>
<author> </author>
<author> </author>
<author> </author>
<publisher> </publisher>
<year> </year>
<section>

</title>
section><title> </title></section>

<section><title> </title></section>
</section>
<section>
<title> </title>
</section>
</book>

</bibliography>

"ISBN": "ISBN-10",
"price": 80.00,

"title": "Foundations of Databases",
a a l I lO e "authors": | "Abiteboul", "Hull", "Vianu" |,

"publisher": "Addison Wesley",
"year": 1995,
"sections":
"title": "Section 1",
"sections":
"title": "Section 1.1” |,
"title": "Section 1.2”

"title": "Section 2"

e Two basic constructs o

: comma-separated list of “things” enclosed by brackets
* Order is important

: comma-separated set of pairs enclosed by braces; each pair
consists of an attribute name (string) and a value (any “thing”)

* Order is unimportant
* Attribute names “should” be unique within an object

» Simple types: numbers, strings (in double quotes), and
special values “true”, “false”, and “null”

* Thing = a simple value or an array or an object

JSON Schema

* Recall the advantages of having a schema

* Defines a structure, helps catch errors, facilitates
exchange/automation, informs optimization...

* Just like relational data and ‘i
. . "type": "array",
XM I_, J S O N IS gettl ng a "description": "Sections.",

"sections": | "$ref":"#definitions/sections"

SChema Standard too! "minltems": 0
* Up and coming, but still a e "Book’,

. type": "object",
"properties":
draft at this stage properti
"type": "string",
"description": "The book's ISBN number."

2
"price":
"type": "number",
"description": "The book's price.",
"exclusiveMinimum": 0

"sections": | "$ref":"#definitions/sections" |,

MongoDB

* One of the “NoSQL” poster children

e Started in 2007

* Targeting semi-structured data in JSON
* Designed to be easy to “scale out”

mongoDB

* Good support for indexing, partitioning, replication
* Nice integration in Web development stacks

* Not-so-great support for joins (or complex queries)
or transactions

Inside a MongoDB database

e Database = a number of “collections”
e Collection = a list of “documents”’

* Document = a JSON object

* Must have an _1d attribute whose value can uniquely
identify a document within the collection

w|n other words, a database has collections of
similarly structured “documents”

* Much like tables of records, as opposed to one big XML
document that contains all data

Querying MongoDB

* find() and sort()

* Analogous to single-table selection/projection/sort

» “Aggregation” pipeline
* With “stages’ analogous to relational operators
* Join, group-by, restructuring, etc.

* MapReduce:

* Supports user-defined functions
* We will save this topic until [ater in this course

We won’t cover syntax for creating/updating
MongoDB databases in lecture
* See “Help” of the course website and read the manuals!

Key features to look out for

* Queries written as JSON objects themselves!

 Natural in some cases (e.g., for specifying conditions on
subsets of attributes), but awkward/misleading in others

* Simple path expressions using the “dot notation”
* Analogous to XPath “/”

* Arrays within objects
* Work on nested array directly using constructs like dot-
index notation, $elemMatch, $map, and $filter

* Or “unnest” an array so its elements get paired with the
owner object in turn for pipeline processing

* A fundamental concept in working with nested data

Basic MongoDB find()

* Assume db refers to the database and
e All books db.bib refers to the collection of books
. * Add .toArray() at end to get pretty output
db.bib.find() * You need to do this for Homework 3!

* Books with title “Foundations of Databases”
db.bib.find(' title: "Foundations of Databases" ')
* Books whose title contains “Database” or “database”
and whose price is lower than $50
db.bib.find(title:/[dD]atabase/, price: $1t:50)
* Books with price between $70 and $100
db.bib.find($and: price: $gte:70 |, price: $lte:100)
* By the way, why wouldn’t the following work?
db.bib.find(= price: $gte:70 , price: $lte:100)
* Books authored by Widom
db.bib.find(authors: "Widom")
* Note the implicit existential quantification

No general “twig” matching!

* Suppose for a moment publisher is an object itself,
with attributes name, state, and country

* The following query won’t get you database books

by US publishers:

db.bib.find(" title: /[dD]atabase/,
publisher: ' country: "US" =)

* Instead, the condition on publisher is satisfied only if it is
an object with exactly one attribute, and this attribute

must be named country and has value "US"

* What happens is that MongoDB checks the equality
against country: "US" ' ds an object, not as a pattern!

More on nested structures

* Dot notation for XPath-like path expressions

* Books where some subsection title contains “1.1”
db.bib.find(' "sections.sections.title": /1\.1/ ')

* Note we that need to quote the expression

* Again, if the expression returns multiple things, the condition
only needs to hold for at least one of them

* Use $elemMatch to ensure that the same array

element satisfies multiple conditions, e.g.:

db.bib.find(sections: $elemMatch:
title: /Section/,
"sections.title": /1\.1/

)
* Dot notation for specifying array elements

* Books whose first author is Abiteboul
db.bib.find("authors.0": "Abiteboul")

* Note 0-based indexing; again, need to quote the expression

find() with projection and sorting

* List just the book prices and nothing else

db.bib.find(price: @ $exists: true
_1d: 0, price: 1)

* The (optional) second argument to find() specifies what
to project: 1 means to return, 0 means to omit
* idisreturned by default unless otherwise specified
* List books but not subsections, ordered by ISBN
db.bib.find(', "sections.sections":0).sort(ISBN:1)

* Output from find() is further sorted by sort() , where 1/-1
mean ascending/descending order

w“Aggregation pipelines” (next) are better suited
for constructing more complex output

MongoDB aggregation pipeline

* Idea: think of a query as performing a sequence of
“stages,” each transforming an input sequence of
JSON objects to an output sequence of JSON objects

* “Aggregation” is a misnomer: there are all kinds of
stages

» Selection ($match), projection (Sproject), sorting ($sort)
* Much of which find() and sort() already do

* Computing/adding attributes with generalized projection

g$project/$addFields), unnesting embedded arrays
$unwind), and restructuring output ($replaceRoot)

 Operators to transform/filter arrays ($map/$filter)

* Join ($lookup)

* Grouping and aggregation ($group)

* Operators to aggregate (e.g., $sum) or collect into an array ($push)

The congress MongoDB database

* As in your Homework 3, Problem 3

* Two collections, people and committees
* Each object in people is a legislator
* roles = array of objects
* Each object in committees is a committee
* members = array of objects

* subcommittees = an array of subcommittee objects, each with its
own members array

* Each member object’s id field references a legislator id

" id" : "B000944",

"birthday" : ISODate("1952-11-09T00:00:00Z"),
"gender" : "M",

"name" : "Sherrod Brown",

"roles" :

"district" : 13,
"enddate" : [ISODate("1995-01-03T00:00:00Z"),

"party" : "Democrat", " id" : "HSAG",
::startc}atc'e"' : I?ODate("1993-01-05TOO:00:OOZ"), "displayname" : "House Committee on Agriculture”,
state" : "OH R "type" . "house",

n

thpeﬂ : "rep

b

"members" :

"id" : "C001062",
"district" : 13, "role" : "Chair"
"enddate" : [ISODate("1997-01-03T00:00:00Z"),
"party" : "Democrat",
"startdate" : ISODate("1995-01-04T00:00:00Z"), "id" : "G000289"
"state" : "OH",
"type" : "rep"
Y e e "subcommittees" :

b

N "COdeH : H15"’
...... "displayname" : "Conservation and Forestry",
"members" :

"id" : "L000491",
"role" : "Chair"

9

"id" : "T000467"

Selection/projection/sorting

Find Republican legislators, output only their name
and gender, sort by name

db.people.aggregate(
$match:
"roles.party": "Republican”

9

$project:

id: false, * aggregate() takes an array of stages
name: true, * Note again quoting the dot natation
gender: true * Note again the semantics of comparing a

: list of values: i.e., the query finds
$sort: legislators who have ever served roles as
name: 1 Republicans

Generalized projection

Find Republican legislators, output their name, gender,
and roles as an array of types (sen or rep)

* Use“: "$xxx""” to tell MongoDB to
db.people.aggregate(interpret xxx as a field in the “current”

match: o . .
$"roles.party": "Republican” object instead of just a string literal
* In $map, as defines a new variable to

$addFields: loop over elements in the input array
C(%mpac.:t_r.oles:. groles” * For each input element, Smap
mapés. '1'?(?1?". roles”, computes the in expression and

appends its value to the output array
s Use®: "$%xxx"" to tell MongoDB
that xxx is a new variable created

in: "Srole.type"

$project: during execution (as opposed to a
_id: faltse, field in the current object)

name: true,

gender: true,

roles: "$compact roles"

Unnesting and restructuring

Create a list of subcommittees: for each, simply
display its name and the name of the committee it

belongs to

db.committees.aggregate(
$unwind: "$subcommittees"” |,
$replaceRoot: = newRoot:
committee: "$displayname",
subcommittee: "$subcommittees.displayname”

For each input committee, Sunwind loops over its
subcommittees array, one element at a time, and outputs a
copy of the committee object, with its subcommittees value
replaced with this single element

Join

For each committee (ignore its subcommittees),
display its name and the name of its chair

 $filter filters input array according to cond and

db.committees.aggregate(produces and output array

$addFields: o | I ifies th
chair member: = $filter: '1 f l%olzup., ltOE alField Stpe;’.f 'ets t he I
input: "$members", attripute Iin e current object wnose value
as: "member", will be used for lookup
cond: | $eq: "$Smember.role", * from specifies the collection in which to
"Chairman" L . . :
look for joining objects; foreignField
, specifies the attribute therein to be joined
Slookup: " Slookup creates an attribute in the current
from: "people", . . g
localField: "chair member.id", object with the name specified by as, and
foreignField: " id", sets it value to an array holding all joining
as: "chair person" objects
$i)roject: @ Non-equadlity joins are also possible, with
_id: false, more complex syntax
name: "$displayname",
chair: | $arrayElemAt: "$chair person.name",0
) SarrayElemAt extracts an array element by its index

("chair _person.0.name" doesn’t work here)

Grouping and aggregation

* Count legislators by gender, and list the names of
legislators for each gender

db.people.aggregate(
$group:
_id: "$gender",
count: | $sum: 1 |,
list: = $push: "$name"

) * Therequired id specifies the grouping expression,
whose value becomes the identifying attribute of output
objects (one per group)

* Other attributes hold aggregate values, computed using
aggregation operators
* Ssum compute a total by adding each input
* Spush creates an array by appending each input

Summary and discussion

* JSON is like much more lightweight version of XML
* But perhaps not as good for mixed contents

* Writing queries JSON is sometimes convenient, but
confusing in many situations

* Query as as pipeline: less declarative, but arguably easier to
implement (especially to parallelize)

* Nested structures requires more query constructs

* $unwind stage, $elemMatch/$map/$filter/$Spush/$arrayElemAt operators,
etc.

* Distinction between the top-level and nested arrays is annoying

* E.g., $match stage and $filter operator basically do the same thing
* XQuery is much nicer in this regard (with ability to nest queries in return)

wThere is actually XQuery-like language for JSON called
“JSONiqg,” but it remains less known

