Physical Data Organization

Introduction to Databases CompSci 316 Spring 2019

Announcements (Thu., Mar. 21)

- Homework #3 due on 03/27 next Wednesday
- Project milestone #2 due next Friday 03/29 (extended by 3 days)
- Weekly progress update from all members of a group due from next week (Piazza post will follow)

Outline

- It's all about disks!
 - That's why we always draw databases as

- And why the single most important metric in database processing is (oftentimes) the number of disk I/O's performed
- Storing data on a disk
 - Record layout
 - Block layout
 - Column stores

Storage hierarchy

How far away is data?

Location	Cycles	Location	<u>Time</u>
Registers	1	My head	1 min.
On-chip cache	2	This room	2 min.
On-board cache	10	Duke campus	10 min.
Memory	100	Washington d.c.	1.5 hr.
Disk	10 ⁶	Pluto	2 yr.
Tape	10 ⁹	Andromeda	2000 yr.

(Source: AlphaSort paper, 1995) The gap has been widening!

I/O dominates—design your algorithms to reduce I/O!

Latency Numbers Every Programmer Should Know

150,000,000

```
Latency Comparison Numbers
L1 cache reference
                                              0.5 ns
Branch mispredict
                                                  ns
L2 cache reference
                                              7
                                                                           14x L1 cache
                                                  ns
Mutex lock/unlock
                                             25
                                                  ns
Main memory reference
                                                                           20x L2 cache, 200x L1 cache
                                            100
                                                  ns
Compress 1K bytes with Zippy
                                          3,000
                                                            3 us
                                                  ns
Send 1K bytes over 1 Gbps network
                                         10,000
                                                           10 us
                                                  ns
Read 4K randomly from SSD*
                                        150,000
                                                          150 us
                                                                           ~1GB/sec SSD
                                                  ns
Read 1 MB sequentially from memory
                                        250,000
                                                          250 us
                                                  ns
Round trip within same datacenter
                                        500,000
                                                          500 us
                                                  ns
                                                                     1 ms ~1GB/sec SSD, 4X memory
Read 1 MB sequentially from SSD*
                                      1,000,000
                                                        1,000 us
                                                  ns
                                     10,000,000
Disk seek
                                                       10,000 us
                                                                    10 ms
                                                                         20x datacenter roundtrip
                                                  ns
Read 1 MB sequentially from disk
                                     20,000,000
                                                       20,000 us
                                                                           80x memory, 20X SSD
                                                                    20 ms
                                                  ns
```

ns

150,000 us

150 ms

Notes

Send packet CA->Netherlands->CA

 $1 \text{ ns} = 10^-9 \text{ seconds}$

A typical hard drive

A typical hard drive

Top view

"Zoning": more sectors/data on outer tracks

Disk access time

Sum of:

- Seek time: time for disk heads to move to the correct cylinder
- Rotational delay: time for the desired block to rotate under the disk head
- Transfer time: time to read/write data in the block (= time for disk to rotate over the block)

Random disk access

Seek time + rotational delay + transfer time

- Average seek time
 - Time to skip one half of the cylinders?
 - Not quite; should be time to skip a third of them
 - "Typical" value: 5 ms
- Average rotational delay
 - Time for a half rotation (a function of RPM)
 - "Typical" value: 4.2 ms (7200 RPM)

Sequential disk access

Seek time + rotational delay + transfer time

- Seek time
 - o (assuming data is on the same track)
- Rotational delay
 - o (assuming data is in the next block on the track)
- Easily an order of magnitude faster than random disk access!

What about SSD (solid-state drives)?

What about SSD (solid-state drives)?

- No mechanical parts
- Mostly flash-based nowadays
- 1-2 orders of magnitude faster random access than hard drives (under 0.1ms vs. several ms)
 - But still much slower than memory (\sim 0.1 μ s)
- Little difference between random vs. sequential read performance
- Random writes still hurt
 - In-place update would require erasing the whole "erasure block" and rewriting it!

Important consequences

- It's all about reducing I/O's!
- Cache blocks from stable storage in memory
 - DBMS maintains a memory buffer pool of blocks
 - Reads/writes operate on these memory blocks
 - Dirty (updated) memory blocks are "flushed" back to stable storage
- Sequential I/O is much faster than random I/O

Performance tricks

- Disk layout strategy
 - Keep related things (what are they?) close together: same sector/block → same track → same cylinder → adjacent cylinder
- Prefetching
 - While processing the current block in memory, fetch the next block from disk (overlap I/O with processing)
- Parallel I/O
 - More disk heads working at the same time
- Disk scheduling algorithm
 - Example: "elevator" algorithm
- Track buffer
 - Read/write one entire track at a time

Record layout

Record = row in a table

- Variable-format records
 - Rare in DBMS—table schema dictates the format
 - Relevant for semi-structured data such as XML
- Focus on fixed-format records
 - With fixed-length fields only, or
 - With possible variable-length fields

Fixed-length fields

- All field lengths and offsets are constant
 - Computed from schema, stored in the system catalog
- Example: CREATE TABLE User(uid INT, name CHAR(20), age INT, pop FLOAT);

- Watch out for alignment
 - May need to pad; reorder columns if that helps
- What about NULL?
 - Add a bitmap at the beginning of the record

Variable-length records

- Example: CREATE TABLE User(uid INT, name VARCHAR(20), age INT, pop FLOAT, comment VARCHAR(100));
- Approach 1: use field delimiters ('\0' okay?)

Approach 2: use an offset array

- Put all variable-length fields at the end (why?)
- Update is messy if it changes the length of a field

LOB fields

- Example: CREATE TABLE User(uid INT, name CHAR(20), age INT, pop FLOAT, picture BLOB(32000));
- Student records get "de-clustered"
 - Bad because most queries do not involve picture
- Decomposition (automatically and internally done by DBMS without affecting the user)
 - (uid, name, age, pop)
 - (<u>uid</u>, picture)

Block layout

How do you organize records in a block?

- NSM (N-ary Storage Model)
 - Most commercial DBMS
- PAX (Partition Attributes Across)
 - Ailamaki et al., VLDB 2001

A -	1 5 9	2 6 10 14	3 11 15	4 8 12 14	
		. •)	•
J - 1 (4	(4

Row mayor	
2 3	_ 4-5-16
1-2-	and I
(01. majo	- 4-5-6 , or del
	0-13-2-6

NSM

- Store records from the beginning of each block
- Use a directory at the end of each block
 - To locate records and manage free space
 - Necessary for variable-length records

Options

- Reorganize after every update/delete to avoid fragmentation (gaps between records)
 - Need to rewrite half of the block on average
- A special case: What if records are fixed-length?
 - Option 1: reorganize after delete
 - Only need to move one record
 - Need a pointer to the beginning of free space
 - Option 2: do not reorganize after update
 - Need a bitmap indicating which slots are in use

Cache behavior of NSM

- Query: SELECT uid FROM User WHERE pop > 0.8;
- Assumptions: no index, and cache line size < record size
- Lots of cache misses
 - uid and pop are not close enough by memory standards

Cache

PAX

- Most queries only access a few columns
- Cluster values of the same columns in each block
 - When a particular column of a row is brought into the cache, the same column of the next row is brought in together

Beyond block layout: column stores

- The other extreme: store tables by columns instead of rows
- Advantages (and disadvantages) of PAX are magnified
 - Not only better cache performance, but also fewer I/O's for queries involving many rows but few columns
 - Aggressive compression to further reduce I/O's
- More disruptive changes to the DBMS architecture are required than PAX
 - Not only storage, but also query execution and optimization
 - Examples: MonetDB, Vertica (earlier, C-store),
 SAP/Sybase IQ, Google Bigtable (with column groups)

Re-use permitted when acknowledging the original @ Starros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

What is a column-store?

row-store

Date Store Product Customer Price

column-store

- + easy to add/modify a record
- + only need to read in relevant data
- might read in unnecessary data
- tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, large data repositories

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco Data Warehousing example

- 1 Typical DW installation
- 1 Real-world example

"One Size Fits All? - Part 2: Benchmarking Results" Stonebraker et al. CIDR 2007

QUERY 2

SELECT account.account_number,
sum (usage.toil_airtime),
sum (usage.toil_price)
FROM usage, toil, source, account
WHERE usage.toil_id = toil.toil_id
AND usage.source_id = source.source_id
AND usage.account_id = account.account_id
AND toil.type_ind in ('AE'. 'AA')
AND usage.toil_price > 0
AND source.type != 'CIBER'
AND toil.rating_method = 'IS'
AND usage.invoice_date = 20051013
GROUP BY account.account_number

	Column-store	Row-store
Query 1	2.06	300
Query 2	2.20	300
Query 3	0.09	300
Query 4	5.24	300
Query 5	2.88	300

Why? Three main factors (next slides)

Re-use permitted when acknowledging the original © Stavros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco example explained (1/3): read efficiency

row store

read pages containing entire rows

one row = 212 columns!

is this typical? (it depends)

What about vertical partitioning? (it does not work with ad-hoc queries)

column store

read only columns needed

in this example: 7 columns

caveats:

- "select * " not any faster
- clever disk prefetching
- clever tuple reconstruction

Re-use permitted when acknowledging the original @ Starros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco example explained (2/3): compression efficiency

- 1 Columns compress better than rows
 - Typical row-store compression ratio 1:3
 - 1 Column-store 1:10

1 Why?

- 1 Rows contain values from different domains
 - => more entropy, difficult to dense-pack
- 1 Columns exhibit significantly less entropy
- Examples:

Male, Female, Female, Female, Male 1998, 1998, 1999, 1999, 2000

Caveat: CPU cost (use lightweight compression)

Re-use permitted when acknowledging the original © Stauros Harizopoulos, Daniel Abadi, Peter Boncz (2009)

Telco example explained (3/3): sorting & Indexing efficiency

- 1 Compression and dense-packing free up space
 - Use multiple overlapping column collections
 - Sorted columns compress better
 - Range queries are faster
 - Use sparse clustered indexes

Example: Apache Parquet

- A table is horizontally partitioned into row groups (~512MB-1GB/row group); each group is stored consecutively
 - On a "block" of HDFS (Hadoop Distributed File System)
- A row group is vertically divided into column chunks, one per column
- Each column chunk is stored in pages (~8KB/page);
 each page can be compressed/encoded
 independently

■ Not designed for in-place updates though!

Summary

- Storage hierarchy
 - Why I/O's dominate the cost of database operations
- Disk
 - Steps in completing a disk access
 - Sequential versus random accesses
- Record layout
 - Handling variable-length fields
 - Handling NULL
 - Handling modifications
- Block layout
 - NSM: the traditional layout
 - PAX: a layout that tries to improve cache performance
- Column stores: NSM transposed, beyond blocks