Physical Data
Organization

Introduction to Databases
CompSci 316 Spring 2019

DUKE

COMPUTER SCIENCE

|

Announcements (Thu., Mar. 21)

due on 03/27 — next Wednesday

due next Friday 03/29
(extended by 3 days)

* Weekly progress update from all members of a
group due from next week (Piazza post will follow)

Outline

* It’s all about disks!
* That’s why we always draw databases as Ej

* And why the single most important metric in database
processing is (oftentimes) the number of disk 1/O’s
performed

* Storing data on a disk
* Record layout
* Block layout
* Column stores

Storage hierarchy

Registers
[
Cache
[
Memory
Why a hierarchy?
—_ S

Disk

How far away is data?

Location Cycles Location Time
Registers My head

On-chip cache This room

On-board cache Duke campus

Memory Washingtono.c.

Disk Pluto

Tape Andromeda

(Source: AlphaSort paper, 1995)
The gap has been widening!

Latency Numbers
Every Programmer Should Know

Latency Comparison Numbers

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 1K bytes over 1 Gbps network
Read 4K randomly from SSD*

Read 1 MB sequentially from memory
Round trip within same datacenter
Read 1 MB sequentially from SSD*
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

Notes

1l ns = 10"-9 seconds

1l us = 10"-6 seconds = 1,000 ns
1l ms = 10"-3 seconds =

Credit

By Jeff Dean:

0.5 ns

5 ns

7 ns

25 ns

100 ns

3,000 ns
10,000 ns
150,000 ns
250,000 ns
500,000 ns
1,000,000 ns
10,000,000 ns
20,000,000 ns

150,000,000

1,000 us = 1,000,000 ns

ns

3

10

150

250

500
1,000
10,000
20,000
150,000

us
us
us
us
us
us
us
us
us

10
20
150

http://research.google.com/people/jeff/

Originally by Peter Norvig: http://norvig.com/2l-days.html#answers

ms
ms
ms
ms

14x L1 cache

20x L2 cache, 200x L1 cache

~1GB/sec SSD

~1GB/sec SSD, 4X memory
20x datacenter roundtrip
80x memory, 20X SSD

A typical hard drive

http://upload.wikimedia.org/wikipedia/commons/f/f8/Laptop-hard-drive-exposed.jpg

A typical hard drive

Tracks

77
= 1>
: Platter

@ Flatter

AN

» Cylinders
|
|

DiskE head
Disk arm

Platter

€¢ 4 »
Arm movement Spindle rotation Moving parts™ are slow
A A |

Top view

“Zoning”: more sectors/data on outer tracks

Sectors

A blockis a
logical unit
of transfer
consisting of
one or more sectors

Disk access time

Sum of:

: time for disk heads to move to the
correct cylinder

: time for the desired block to
rotate under the disk head

: time to read/write data in the block
(= time for disk to rotate over the block)

Random disk access

Seek time + rotational delay + transfer time

* Average seek time
* Time to skip one half of the cylinders?
* Not quite; should be time to skip a third of them
* “Typical” value: 5 ms

* Average rotational delay
* Time for a half rotation (a function of RPM)
 “Typical” value: 4.2 ms (7200 RPM)

Sequential disk access

Seek time + rotational delay + transfer time

* Seek time
* 0 (assuming data is on the same track)

* Rotational delay
* 0 (assuming data is in the next block on the track)

* Easily an order of magnitude faster than random
disk access!

What about SSD (solid-state drives)?

http://www.techgoondu.com/wp-content/uploads/2012/12/SSD-6-25-121.jpg

What about SSD (solid-state drives)?

* No mechanical parts
* Mostly flash-based nowadays

* 1-2 orders of magnitude faster random access than
hard drives (under 0.1ms vs. several ms)

e But still much slower than memory (~0.1us)

* Little difference between random vs. sequential
read performance
* Random writes still hurt

* In-place update would require erasing the whole
“erasure block” and rewriting it!

Important consequences

* It’s all about reducing 1/O’s!

* Cache blocks from stable storage in memory
* DBMS maintains a memory of blocks
* Reads/writes operate on these memory blocks

* Dirty (updated) memory blocks are “flushed” back to
stable storage

* Sequential 1/O is much faster than random 1/O

a

Performance tricks %(&(@

* Disk layout strategy

 Keep related things (what are they?) close together:
same sector/block — same track — same cylinder —
adjacent cylinder

* Prefetching

* While processing the current block in memory, fetch the
next block from disk (overlap I/O with processing)

e Parallel I/O

* More disk heads working at the same time L
* Disk scheduling algorithm @

* Example: “ele&or” algorithm N
e Track buffer A

* Read/write one entire track at a time \ &

18

Record layout i J

. A
Record =row in a table l, \N)\”\C S /.\e ¢

e Variable-format records 2, X/
« Rare in DBMS—table schema dictates the format (}B(W
* Relevant for semi-structured data such as XML Z e

* Focus on fixed-format records

* With fixed-length fields only, or
* With possible variable-length fields

Fixed-length fields

* All field lengths and offsets are constant
* Computed from schema, stored in the system catalog

* Example: CREATE TABLE User(uid INT, name CHAR(20), age
INT, pop FLOAT);

o) 4 24 28 36
‘ ‘ (padded with space) ‘ ‘ ‘

* Watch out for alignment
* May need to pad; reorder columns if that helps

* What about NULL?
* Add a bitmap at the beginning of the record

Variable-length records

* Example: CREATE TABLE User(uid INT,
, age ;NT, pop FLOAT,

* Approach 1: use field delimiters (‘\0’ okay?)
0 4 8 16

* Approach 2: use an offset array

0 4 3 16 18 22 32

* Put all variable-length fields at the end (why?)
* Update is messy if it changes the length of a field

LOB fields

* Example: CREATE TABLE User(uid INT,
name CHAR(20), age INT,
pop FLOAT, picture);
* Student records get “de-clustered”
* Bad because most queries do not involve picture

* Decomposition (automatically and internally done
by DBMS without affecting the user)
* (uid, name, age, pop)
* (uid, picture)

Block layout

How do you organize records in a block?

(N-ary Storage Model) \ &
e Most commercial DBMS BEAE 4%
(Partition Attributes Across) XL ‘ 3 Y]
+ Ailamaki et al., VLDB 2001 - - ‘\",) I
\ by > o
"al
Rpw w07 - NV C
Ao L4=S kT
\— &~ <
Co ’*@ ST
V- ST

NSM D W E

* Store records from the beginning of each block

* Use a directory at the end of each block
* To locate records and manage free space
* Necessary for variable-length records

Why store data a
at two different e

So both can grow

Options

* Reorganize after every update/delete to avoid
fragmentation (gaps between records)

* Need to rewrite half of the block on average

* A special case: What if records are fixed-length?

* Option 1: reorganize after delete

* Only need to move one record

* Need a pointer to the beginning of free space
* Option 2: do not reorganize after update

* Need a bitmap indicating which slots are in use

25

Cache behavior of NSM

* Query: SELECT uid FROM User WHERE pop > 0.8;
* Assumptions: no index, and cache line size < record size

* Lots of cache misses
* uid and pop are not close enough by memory standards

142 Bart 10

0.9 123 Milhouse

100.2 857 Lisa

8 0.7

456 Ralph 8

0.3

Cache

26

PAX

* Most queries only access a few columns

* Cluster values of the same columns in each block

* When a particular column of a row is brought into the cache,
the same column of the next row is brought in together

—+ | '] "] 4] (humber of records) Reorganize after every update
142 | 123] 857 | 456 e-length records only)
o keep fields together

 Bart J<ithouse fiss Jealan
B

ofio]s]s

(IS NOT NULL bitmap)

Beyond block layout: column stores

* The other extreme: store tables by columns
instead of rows

* Advantages (and disadvantages) of PAX are
magnified
* Not only better cache performance, but also fewer 1/O’s
for queries involving many rows but few columns

* Aggressive compression to further reduce 1/O’s

* More disruptive changes to the DBMS architecture
are required than PAX
* Not only storage, but also query execution and
optimization
* Examples: MonetDB, Vertica (earlier, C-store),
SAP/Sybase 1Q, Google Bigtable (with column groups)

G

- Pl i v Echrviestunigiegg e origieedl & Sl ool HarEoioukn, Dareel Abad, Peled Bonecs (3000

What is a column-store?

row-store column-store

e e,

+ easy to add/modify a record + only need to read in relevant data

- might read in unnecessary data - tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, large data repositories

Ack: Slide from VLDB 2009 tutorial on Column store

Duke CS, Fall 2018 CompSci 516: Database Systems

29

P =il ey Echrvcmsbind it riggieedll i Elintond HriSisniken, Diceel Al Paler Blorece (0300

Telco Data Warehousing example

1 Typical DW installation | dimension tables

1 Heal-world example

“One Size Fits All? - Part 2: Benchmarking toll Baaa
Results™ Stonebraker et al. CIDR 2007 star schema

QUERY 2
SELECT accountaccount number,
sm {usago.boll_alrtime],
sim {usage.boll_prica)

T I T F O

paERE

(T1 1]
X

account fact table

T usege

Column-store Row-sfore

RO o, Sl s, incaici

WHERE usege.toil = t0IL10I Jd Query 1 2.06 300

:ﬂgungmuwnlji--wnajmma{in Query 2 2.20 00
usage.account_id = account acoou

AND tolLtype_ind In (AE". “AA") Query 3 0.09 300

AND: weageloN_prics > § Query 4 5.24 300

AND source.type = ‘CIBER" . 5 288

AND mollrating mathod = ‘|15
AND usage.involoe_date = 20081013
GROUP BY account account_numibser

Duke CS, Fall 2018

Why? Three main factors (next slides)

Ack: Slide from VLDB 2009 tutorial on Column store

CompSci 516: Database Systems

30

31

sERE
e

Telco example explained (1/3):

Pt Sl ! Wit achiomimdgieng the ongicel & St o HariEosoukes, Darsel Abad, Peter Boncs (2000 |

read efficlency
row store column store
=R
I | I I I
—— “
read pages containing entire rows read only columns needed
one row = 212 columns! in this example: 7 columns
5 this typical ? (it depends) caveats:
“select * 7 not any faster
- —— - clever disk prefetching
‘ rult""ﬂl t'hmt""t 'E"'I':"mw” ing* . clever tuple reconstruction
el

Ack: Slide from VLDB 2009 tutorial on Column store

Duke CS, Fall 2018 CompSci 516: Database Systems

-y pev==sifl o] e achnossfandgiegg the origiesl & Sneetom Harzosoobes, Darsel Abad, Peter Bloree (2000)

Telco example explained (2/3):
compression efficilency

1 Columns compress better than rows
Typical row-store compression ratio 1 : 3

Column-store 1 - 10

1 Why?
Hows contain values from different domains
== more entropy, difficult to dense-pack
Columns exhibit significantly less entropy

Examples: Male, Female, Female, Female, Male
1998, 1998, 1999, 1999, 1999, 2000

Caveat: CPU cost (use lightweight compression)

Ack: Slide from VLDB 2009 tutorial on Column store

Duke CS, Fall 2018 CompSci 516: Database Systems

32

Fs-iein [Pl i vy ke iy D origieodl & Slanefon HariEogobon, Dol Al Pebis' Bioncs (0000

Telco example explained (3/3):
sorting & Indexing efficlency

1 Compression and dense-packing free up space
Use muluple overlapping column collections

Sorted columns compress better
Hange quenes are faster

Use sparse clustered indexes

sane
e

Ack: Slide from VLDB 2009 tutorial on Column store

Duke CS, Fall 2018 CompSci 516: Database Systems

33

Example: Apache Parquet

* A table is horizontally partitioned into
(~512MB-1GB/row group); each group is stored
consecutively

* On a ‘“block” of HDFS (Hadoop Distributed File System)

* Arow group is vertically divided into
, one per column

* Each column chunk is stored in (~8KB/page);
each page can be compressed/encoded
independently

e-Not designed for in-place updates though!

35

[)
Summary DD dy al |

* Storage hierarchy
* Why 1/0O’s dominate the cost of database operations

* Disk
* Steps in completing a disk access
* Sequential versus random accesses

* Record layout
* Handling variable-length fields
* Handling NULL
* Handling modifications

* Block layout
* NSM: the traditional layout
* PAX: alayout that tries to improve cache performance

* Column stores: NSM transposed, beyond blocks

