3/21/19

Physical Data
Organization

Introduction to Databases
CompSci 316 Spring 2019

KE
COMPUTER SCIENCE

Announcements (Thu., Mar. 21)

* Homework #3 due on 03/27 — next Wednesday

* Project milestone #2 due next Friday 03/29
(extended by 3 days)

* Weekly progress update from all members of a
group due from next week (Piazza post will follow)

Outline

* It’s all about disks!
* That’s why we always draw databases as
* And why the single most important metric in database
processing is (oftentimes) the number of disk 1/0’s
performed
* Storing data on a disk
* Record layout
* Block layout
* Column stores

Storage hierarchy

Memory

Why a hierarchy?

How far away is data?

Location Cycles Location Time
Registers 1 My head 1 min.
On-chip cache 2 This room 2 min.
On-board cache 10 Duke campus 10 min.
Memory 100 Washingtono.c. 1.5 hr.
Disk 10° Pluto 2yr.
Tape 109 Andromeda 2000 yr.

(Source: AlphaSort paper, 1995)
The gap has been widening!

I/O dominates—design your algorithms to reduce 1/O!

Latency Numbers
Every Programmer Should Know

Latency Comparison Numbers

L1 cache reference 0.5 ns
Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 s 20x L2 cache, 200x Ll cache
Compress 1K bytes with Zippy 3,000 ns 3 us

Send 1K bytes over 1 Gbps network 10,000 ns 10 us

Read 4K randomly from SSD* 150,000 ns 150 us -1GB/sec SSD

Read 1 MB sequentially from memory 250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms -1GB/sec SSD, 4X memory

Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

1 ns = 10°-9 seconds
1 us = 10"-6 seconds = 1,000 ns
1 ms = 10"-3 seconds = 1,000 us = 1,000,000 ns

Credit
By Jeff Dean: http://research.google.com/people/jeff/
Originally by Peter Norvig: http://norvig.com/21-days.html#answers

3/21/19

A typical hard drive

f8/Lapiop-hard-drive-exposed.jpe

hup://upload wikimed

A typical hard drive
Tracks
Platter

Platter

1
| Cylinders
DiskI helad

Disk ar%

Platter

— .
Arm movement spindle rotation -Moving parts” are slow
A A J

Top view

“Zoning”: more sectors/data on outer tracks

Sectors

Ablockisa
logical unit
of transfer

consisting of
one or more sectors

Disk access time

Sum of:

 Seek time: time for disk heads to move to the
correct cylinder

* Rotational delay: time for the desired block to
rotate under the disk head

 Transfer time: time to read/write data in the block
(= time for disk to rotate over the block)

Random disk access

Seek time + rotational delay + transfer time

* Average seek time
* Time to skip one half of the cylinders?
* Not quite; should be time to skip a third of them
* “Typical” value: 5 ms
* Average rotational delay
* Time for a half rotation (a function of RPM)
* “Typical” value: 4.2 ms (7200 RPM)

Sequential disk access

Seek time + rotational delay + transfer time
* Seek time
* 0 (assuming data is on the same track)

* Rotational delay
* 0 (assuming data is in the next block on the track)

* Easily an order of magnitude faster than random
disk access!

3/21/19

What about SSD (solid-state drives)?

http://www.techgoondu.com/wp-content/uploads/2012/12/SSD-6-25-12 1 jpg

What about SSD (solid-state drives)?

* No mechanical parts
* Mostly flash-based nowadays
* 1-2 orders of magnitude faster random access than
hard drives (under 0.1ms vs. several ms)
* But still much slower than memory (~0.1us)
* Little difference between random vs. sequential
read performance

* Random writes still hurt
* In-place update would require erasing the whole
“erasure block” and rewriting it!

Important consequences

* It’s all about reducing 1/0’s!

* Cache blocks from stable storage in memory
* DBMS maintains a memory of blocks
* Reads/writes operate on these memory blocks
* Dirty (updated) memory blocks are “flushed” back to
stable storage

* Sequential 1/O is much faster than random 1/0O

Performance tricks

* Disk layout strategy

* Keep related things (what are they?) close together:
same sector/block — same track — same cylinder —»
adjacent cylinder

* Prefetching

* While ?rocessing the current block in memory, fetch the
next block from disk (overlap 1/O with processing)

* Parallel 1/O

* More disk heads working at the same time
* Disk scheduling algorithm

* Example: “elevator” algorithm

* Track buffer
* Read/write one entire track at a time

Record layout

Record = row in a table

* Variable-format records
* Rare in DBMS—table schema dictates the format
* Relevant for semi-structured data such as XML

* Focus on fixed-format records
* With fixed-length fields only, or
* With possible variable-length fields

Fixed-length fields

* All field lengths and offsets are constant
* Computed from schema, stored in the system catalog

* Example: CREATE TABLE User(uid INT, name CHAR(20),
age INT, pop FLOAT);
o 4 24 28 36
I I (padded with space) I I I

* Watch out for alignment

* May need to pad; reorder columns if that helps
* What about NULL?

* Add a bitmap at the beginning of the record

3/21/19

Variable-length records

. Example: CREATE TABLE User(uid INT,
name VARCHAR(20), a%e INT, pop FLOAT,
comment VARCHAR(100));

* Approach 1: use field delimiters (10’ okay?)

04 8 16
I |4:| 10 I 09 IB;ullJ I\\cudl\ldl 0 |

* Approach 2: use an offset array
04 8 1618 22 32

I 142 I 10 I 0.9 u Bart I\\cird kid! I
2

32

* Put all variable-length fields at the end (why?)
* Update is messy if it changes the length of a field

LOB fields

* Example: CREATE TABLE User(uid INT,
name CHAR(20), age INT,
pop FLOAT, picture BLOB(32000));
* Student records get “de-clustered”
* Bad because most queries do not involve picture
* Decomposition (automatically and internally done
by DBMS without affecting the user)
* (uid, name, age, pop)
* (uid, picture)

Block layout

How do you organize records in a block?
* NSM (N-ary Storage Model)
* Most commercial DBMS

* PAX (Partition Attributes Across)
« Ailamaki et al., VLDB 2001

NSM

* Store records from the beginning of each block

* Use a directory at the end of each block
* To locate records and manage free space
* Necessary for variable-length records

T T N
Why store data a
at two different e

So both can grow|

Options

* Reorganize after every update/delete to avoid
fragmentation (gaps between records)
* Need to rewrite half of the block on average

* A special case: What if records are fixed-length?
* Option 1: reorganize after delete
* Only need to move one record
* Need a pointer to the beginning of free space
* Option 2: do not reorganize after update
* Need a bitmap indicating which slots are in use

Cache behavior of NSM

* Query: SELECT uid FROM User WHERE pop > 0.8;
* Assumptions: no index, and cache line size < record size

* Lots of cache misses
* uid and pop are not close enough by memory standards

Milhouse 2 142 Bart 10

0.9 123 Milhouse

] rappe]os | 1002857 Lisa

807

456 Ralph 8

03

ST Cache

3/21/19

PAX

* Most queries only access a few columns

* Cluster values of the same columns in each block

* When a particular column of a row is brought into the cache,
the same column of the next row is brought in together

Reorganize after every update
-length records only)
o keep fields together

(IS NOT NULL bitmap)

Beyond block layout: column stores

* The other extreme: store tables by columns
instead of rows

* Advantages (and disadvantages) of PAX are
magnified
* Not only better cache performance, but also fewer 1/0’s
for queries involving many rows but few columns
* Aggressive compression to further reduce 1/O’s

* More disruptive changes to the DBMS architecture
are required than PAX
* Not only storage, but also query execution and
optimization
+ Examples: MonetDB, Vertica (earlier, C-store),
SAP/Sybase 1Q, Google Bigtable (with column groups)

What is a column-store?

Duriel Abus, ‘

row-store column-store

oo [sere [2 o | stoe) procuct Boustomer | e

e, R

+ easy to add/modify a record +only need to read in relevant data

- might read in unnecessary data - tuple writes require multiple accesses

=> suitable for read-mostly, read- ive, large data rep

Ack: Slide from VLDB 2009 tutorial on Column store

Duke CS, Fall 2018 Compsci 516: Database Systems

Ouiel Abes,

Telco Data Warehousing example

1 Typical DW installation | dimension tables

1 Real-world example

“One Size Fits All? - Part 2: Benchmarking
Results” Stonebraker et al. CIDR 2007

QUERY 2

SELECT number,
(usage.toll_sirtime)

powid :_.g.ujm.: » Column-store Row-store
usage, tol, source, Query 300

WHERE usage.toll_id = tolltoll_id 1206

AND usage.source_id = source.source_kd Query 2 2.20 300

AND usage.account_id = account.account i Query 300

AND tolLtype_ind in (‘AE". ‘AA) 3009

o Query 4 5.24 300

AND sourca type = CIBER Query 5 2.88 300

AND usage.invoice_date = 20061013

GROUP BY account sccount_number Why? Three main factors (next slides)

Ack: Slide from VLDB 2009 tutorial on Column store

Duke CS, Fall 2018 Compsci 516: Database Systems

Telco example explair;'é'a‘ (1/3):

read efficlency H
row store column store
read pages containing entire rows read only columns needed

one row = 212 columns! in this example: 7 columns

is this typical? (it depends) caveats:
“select * " not any faster
‘What about verti wre— - clever disk prefetching
(HErmrrioTs 'i."-m""“"'“' | - clever tuple reconstruction

D Ack: Slide from VLDB 2009 tutorial on Column store

Duke CS, Fall 2018 Compsci 516: Database Systems

Telco example explair?éff(%):
compression efficlency
1 Columns compress better than rows
: Typical row-store compression ratio 1:3
: Column-store 1: 10

1 Why?
Rows contain values from different domains
=> more entropy, difficult to dense-pack
» Columns exhibit significantly less entropy
Examples: Male, Female, Female, Female, Male
1998, 1998, 1999, 1999, 1999, 2000

Caveat: CPU cost (use lightweight compression)

Ack: Slide from VLDB 2009 tutorial on Column store

Duke CS, Fall 2018 Compsci 516: Database Systems

3/21/19

Telco example explained (3/3):

sorting & Indexing efficlency

1 Compression and dense-packing free up space
Use multiple overlapping column collections
Sorted columns compress better
Range queries are faster
Use sparse clustered indexes

Ack: Slide from VLDB 2009 tutorial on Column store

Duke CS, Fall 2018 Compsci 516: Database Systems

Example: Apache Parquet ////'/
7

* A table is horizontally partitioned into row groups
(~512MB-1GB/row group); each group is stored
consecutively

* On a “block” of HDFS (Hadoop Distributed File System)

* Arow group is vertically divided into column
chunks, one per column

* Each column chunk is stored in pages (~8KB/page);
each page can be compressed/encoded
independently

@Not designed for in-place updates though!

Summary

* Storage hierarchy

* Why 1/0’s dominate the cost of database operations
* Disk

* Steps in completing a disk access

* Sequential versus random accesses
* Record layout

* Handling variable-length fields

* Handling NULL

* Handling modifications
* Block layout

* NSM: the traditional layout

* PAX: a layout that tries to improve cache performance
* Column stores: NSM transposed, beyond blocks

