Indexing

Introduction to Databases
CompSci 316 Spring 2019

ﬁ- DUKE
COMPUTER SCIENCE

Announcements (Tue., Mar. 26)

due tomorrow 03/27
* 5% per hour late penalty

due Friday 03/29

* one report per group

* one problem (similar to exam problems) on every
week’s lectures due in 7 days (see piazza post)

* gradiance problems are due in two weeks

required from all project
group members by each Friday on your piazza
threads

* see piazza

Take-away from last lecture?

C".Ql" AcleMr — Pl}*hp"c. 5)©

Today’s lecture

* Index

e Dense vs. Sparse A
e Clustered vs. unclustered > Related

* Primary vs. secondary Y
 Tree-based vs. Hash-index

What are indexes for?

* Given a value, locate the record(s) with this value

SELECT * FROM R WHERE ; a
SELECT * FROM R, S WHERE ;
Focus
* Find data by other search criteria, e.g. > of this
lecture
* Range search
SELECT * FROM R WHERE ; J

* Keyword search

Idatabaseindexing ”i Search I

High level structure of indexes

)Q
e (in class) k
» what is d search key k2

» what is data entry (index entry) k*? - }P,)\a\e 2
* how do we access arecord? ,>) e N
s \ 6€C
\C *}QW
A

Dense and sparse indexes

: one index entry for each search key value
* One entry may “point” to multiple records (e.g., two users named Jessica)

: one index entry for each block

* Records must be according to the search key
123 Milhouse 10 0.2 Bart
142 Bart 10 0.9 Jessica
279 Jessica 10 0.9 Lisa
123
345 Martin 8 2.3 Martin
456
\ .
857 456 Ralph 8 03 Milhouse
) 512 Nelson 10 04 Nelson
Sparse index _ Ralph
on uid 679 Sherri 10 0.6 .
697 Terri 10 0.6 Sherri
Terri
857 Lisa 8 0.7
Windel
912 Windel 8 0.5 _
997 Jessica 8 0.5 Dense index

on name

Dense versus sparse indexes

* Index size
* Sparse index is smaller

* Requirement on records
* Records must be clustered for sparse index

* Lookup
* Sparse index is smaller and may fit in memory
* Dense index can directly tell if a record exists

* Update
* Easier for sparse index

Primary and secondary indexes

* Created for the of a table
* Records are usually clustered by the primary key
* Can be sparse

* Usually dense

* SQL
* PRIMARY KEY declaration automatically creates a primary
index, UNIQUE key automatically creates a secondary
index
* Additional secondary index can be created on non-key
attribute(s):
UserPoplndex User(pop);

ISAM

* What if an index is still too big?
 Put a another (sparse) index on top of that!
), more or less

(

Example: look up 197

Index blocks

100, 200, ..., 901

/

100, 108,
119, 121

123, 129,

Data blocks

2 S
100, 123, ..., 192 200, ... 901, ..., 996
yi |//

192, 197, 200, 202, 901, 907, 996, 997,

Updates with ISAM

100, 200, ..., 901
Example: delete 129 p N
Index blocks 100, 123, ..., 192 200, ... 901, ..., 996
pd y4 4
100, 108, 192, 197, 200, 202, 901, 907, 996, 997,
119, 121
107 Data blocks

* Overflow chains and empty data blocks degrade
performance

* Worst case: most records go into one long chain, so
lookups require scanning all data!

B*-tree

° A
(more or less): good performance guarantee
: one node per block; large fan-out

150
180

Sample B*-tree nodes

to keys
100 <k
e
-, v
to keys to keys to keys to keys

100 < k<120 120<k <150 150<k <180 180<k

to records with these k values;
or, store records directly in leaves

130
N

120

-|> to next leaf node in sequence

B*-tree balancing properties

* Height constraint: all leaves at the same lowest level
* Fan-out constraint: all nodes at least half full

(except root)

Max # Max # Min # Min #
pointers keys active pointers keys
Non-leaf f f—1 [f/2] [f/2] —1
Root f f—1 2 1
Leat f f-1 Lf /2] Lf /2]

Lookups

* SELECT * FROM R WHERE ;
* SELECT * FROM R WHERE k =32;

_

100

o

120
150

Not found
B N [S 8 S RS.H
by N

Range query

* SELECT * FROM R WHERE k> 32 AND k< 179;

And follow next-leaf pointers until you hit upper bound

16

1200

Insertion

* Insert a record with search key value 32

o
o
i

Look up where the

inserted key
should go

120
150
180

17

O
o
—

i 3

And insert it right there

Another insertion example

* Insert a record with search key value 152

-
o
L

120
150

50’180
15

8 & S SR R R R S
N N
Oops, node is already full!

19

Node splitting

100

Oops, that node

o O
|
2] becomes full

<1100
-—1101
<1180
1200

More node splitting

00
156

Need to add to parent node a pointer
to the newly created node

120
150

© «d O o O O N o O o O

© O AN ™M n N n N~ 0 O

— o o — - = o — A
* In the worst case, node splitting can “propagate” all the way up

to the root of the tree (not illustrated here)

* Splitting the root introduces a new root of fan-out 2 and causes the tree
to grow “up” by one level

21

Deletion

* Delete a record with search key value 130

Look up the key

to be deleted... ™
0 be delete <

~—
~—

<1156
1179
180
1200

And delete it
Oops, node is too empty!

Stealing from a sibling

100

O
LN
Remember to fix the key m

in the least common ancestor
of the affected nodes

© «w O o o O O o O
O O AN 1N i N~ o0 O
— < o i o —

Another deletion example

* Delete arecord with search key value 179

o
o
i
o W O
AN 1 o0
— 1 i
S82r{588 HBY {28
© O AN N N § 0 O
o = ST o < < N

Cannot steal from siblings
Then coalesce (merge) with a sibling!

Coalescing

Remember to delete the
appropriate key from parent

* Deletion can “propagate” all the way up to the root of the
tree (not illustrated here)
* When the root becomes empty, the tree “shrinks” by one level

Performance analysis

 How many 1/O’s are required for each operation?
* h, the (more or less)
* Plus one or two to manipulate actual records
* Plus O(h) for reorganization (rare if f is large)
* Minus one if we cache the root in memory

* How big is h?
* Roughly logfanout N, where N is the number of records

* B*-tree properties guarantee that fan-out is least f /2 for
all non-root nodes

* Fan-out is typically large (in hundreds)—many keys and
pointers can fit into one block

* A 4-level B*-tree is enough for “typical” tables

B*-tree in practice

* Complex reorganization for deletion often is not
implemented (e.g., Oracle)

* Leave nodes less than half full and periodically
reorganize

* Most commercial DBMS use B*-tree instead of
hashing-based indexes because B*-tree handles
range queries

The Halloween Problem

* Story from the early days of System R...

* There is a B*-tree index on Payroll(salary)
* The update never stopped (why?)

* Solutions?
* Scanindex in reverse, or
* Before update, scan index to create a “to-do” list, or
* During update, maintain a “done” list, or
* Tag every row with transaction/statement id

https://en.wikipedia.org/wiki/Halloween Problem

B*-tree versus ISAM

* |ISAM is more ; B*-tree is more

* ISAM can be more compact (at least initially)
 Fewer levels and I/O’s than B*-tree

* Overtime, ISAM may not be balanced
* Cannot provide guaranteed performance as B*-tree does

29

B*-tree versus B-tree

* B-tree: why not store records (or record pointers)
in non-leaf nodes?
* These records can be accessed with fewer |/O’s

* Problems?

* Storing more data in a node decreases fan-out and
increases h

* Records in leaves require more 1/O’s to access
* Vast majority of the records live in leaves!

Beyond ISAM, B-, and B*-trees

e Other tree-based indexes: R-trees and variants,
GiST, etc.

* How about binary tree?

* Hashing-based indexes: extensible hashing, linear
hashing, etc.

* Text indexes: inverted-list index, suffix arrays, etc.

* Other tricks: bitmap index, bit-sliced index, etc.

30

32

Clustered vs. Unclustered Index

* If order of data records in a file is the same as, or "close to’,
order of data enftries in an index, then clustered, otherwise
unclustered

* How does it affect # of page accesses? (in class)

Index entries
CLUSTERED direct search for UNCLUSTERED
data entries

oW " ‘#_) == 12 ata entries | | Dataentries ;%“Qﬂ;@*‘ "%
/A (ndex File Y
2L e

(Data file) -7 /
NN\ / {\é‘wm

jorf [12 [1an RB‘ \ 6 nw | n
— —_— Data Records U

Data Records

33

Clustered vs. Unclustered Index

* How does it affect # of page accesses? (in class)

* SELECT * FROM USER WHERE age =50 1‘0 .
. Assum ith age =50 /)_
— A .
* Assume one page can holdser records

* Suppose accessing the data éntry (-ies) require 3 10s in a B+-tree, which
contain pointers to the data records (all pointers in the same tree node)

——

Hash vs. Tree Index

* Hash indexes can only handle equality queries
==
(requires hash index on (age))
(requires hash index on R.A or S.A)

(requires hash index on
(age, name))

* Cannot handle range queries q

ﬁ° need to use tree indexes (more common)

* Treeindex on (age), or (age, name) works, but not (name, age) — why?

But are more amenable to parallel processing
* late hash-based join = —

* Performance depends on how good the hash function is (whether th
hash function distributes data uniformly and whether data has skew)

* Details of hash-based dynamic index (extendible hashing, linear
hashing) not covered in this class

Trade-offs for Indexes

* Should we use as many indexes as possible?
’ «‘”)\7 ‘
Y — N\ 7
VA) ey) Iea il

o

L

Trade-offs for Indexes

* Should we use as many indexes as possible?

* Indexes can make

* queries go faster
* updates slower

* Require disk space, too

Index-Only Plans ANy Q

>

* A number of queries can be answered without retrieving any
tuples from one or more of the relations involved if a suitable
index is available

SELECT E.dno, MIN(E.sal)
SELECT E.dno, COUNT(" FROM Emp E
FROM Emp E —= GROUP BY E.dno
GROUP BY E.dno <E.dno E.sal>
Tree index!
@ <E. age,E.sal>
Tree index!
SELECT AVG(E.sal)

For index-only FROM Emp E

strategies, clustering is WHERE E.age=25 AND

not important E.sal BETWEEN 3000 AND 5000

