3/26/19

Indexing

Introduction to Databases
CompSci 316 Spring 2019

E. DUKE
COMPUTER SCIENCE

Announcements (Tue., Mar. 26)

due tomorrow 03/27
* 5% per hour late penalty
due Friday 03/29
* one report per group

* one problem (similar to exam problems) on every
week’s lectures due in 7 days (see piazza post)
* gradiance problems are due in two weeks
required from all project
group members by each Friday on your piazza
threads
* see piazza

Today’s lecture

* Index

* Dense vs. Sparse

* Clustered vs. unclustered Related
* Primary vs. secondary

* Tree-based vs. Hash-index

What are indexes for?

* Given a value, locate the record(s) with this value
SELECT * FROM R WHERE ;
SELECT * FROM R, S WHERE ; Focus
* Find data by other search criteria, e.g. of this
lecture
* Range search
SELECT * FROM R WHERE ;
* Keyword search

I database indexing I Search I

High level structure of indexes

* (in class)

* what is a search key k?

* what is data entry (index entry) k*?
* how do we access a record?

Dense and sparse indexes

: one index entry for each search key value

* One entry may “point” to multiple records (e.g., two users named Jessica)
: one index entry for each block

* Records must be according to the search key

123 Milhouse 10 0.2 Bart
/ 142 Bart 1009 Jessica
T2 279 Jessica 1009 Lisa
o 345 Martin 8 23 Martin
- :
e 456 Ralph 8 03 Milhouse
— Nelson
Sparse index 512 Nelson 10 04 =
on uid 679 Sherri 1006 Ralph
697 Temi 10 06 [~ | Sherri
= Temi
857 Lisa s 07 =
Windel
912 Windel 8 05 o ind
ense iIndex
997 Jessica s 05
on name

3/26/19

Dense versus sparse indexes Primary and secondary indexes

* Index size
* Sparse index is smaller

* Requirement on records
* Records must be clustered for sparse index

* Created for the of a table
* Records are usually clustered by the primary key
* Can be sparse

* Lookup

* Sparse index is smaller and may fit in memory * Usually dense

* Dense index can directly tell if a record exists *SQL
* Update * PRIMARY KEY declaration automatically creates a
« Easier f ind primary index, UNIQUE key automatically creates a
asier for sparse index secondary index
* Additional secondary index can be created on non-key
attribute(s):

UserPopIndex User(pop);

ISAM Updates with ISAM
* What if an index is still too blg7 Example: delete 129 100, 200, ..., 901

* Put a another (sparse) index on top of that! / \
)’ more or less Index blocks L 100,123, ..., 192 | | 200, ... | | 901, ..., 996 |
Example: |OOk up I ()7 100, 108, 123, 12,9/ 192,197, 200, 202, 901, 907, 996, 997,
‘]00,200....,901 119, 121
107 Data blocks
Index blocks L 100, 123, ..., 192 J | 200, ... | | 901, ..., 996 |
* Overflow chains and empty data blocks degrade
100, 108, 123,129, | 192,197, 200,202, | 901,907, | 996, 997. | performance
e * Worst case: most records go into one long chain, so
Data blocks lookups require scanning all data!
+ +
B*-tree Sample B*-tree nodes
to keys
‘A 100 <k

(more or less): good performance guarantee
: one node per block; large fan-out

to keys to keys to keys to keys
100 <k <120 120<k <150 150 <k <180 180 <k

oS o .
[S] to next leaf node in sequence

| to records with these k values;
or, store records directly in leaves

3

5

11
-t 30
<1100
120
1130
<150
1156

179
-
{180

<1200

<1101
<1110

B*-tree balancing properties

* Height constraint: all leaves at the same lowest level

* Fan-out constraint: all nodes at least half full
(exceptroot)

Max # Max # Min # Min #
pointers _ keys active pointers keys
Non-leaf f f-1 [f/2] [f/2]—1
Root f f-1 2 1
Leaf f f-1 Lf/2l Lf/2l

3/26/19

Lookups

* SELECT * FROM R WHERE ;
* SELECT * FROM R WHERE £k = 32;

/

o

Range query

* SELECT * FROM R WHERE k> 32 AND k < 179;

And follow next-leaf pointers until you hit upper bound

Insertion

* Insert a record with search key value 32

Look up where the
inserted key
should go...

<1100
<1101

1120
1130
<1150
-—1156
1179
<1180
<200

-—1110

And insert it right there

Another insertion example

* Insert a record with search ke_ value 152

Oops, node is already full!

Node splitting

Oops, that node
becomes full!

3/26/19

More node splitting

Need to add to parent node a pointer
to the newly created node

120
130
152

S =
S o

110

H

HE
RN

* In the worst case, node splitting can “propagate” all the way up
to the root of the tree (not illustrated here)
* Splitting the root introduces a new root of fan-out 2 and causes the tree
to grow “up” by one level

8 8 22 |
b R

Deletion

* Delete a record with search key value 130

Look up the key
to be deleted...

TT T

And delete it
Oops, node is too empty!

Stealing from a sibling

Remember to fix the key
in the least common ancestor
of the affected nodes

Another deletion example

* Delete a record with search key value 179

Cannot steal from siblings
Then coalesce (merge) with a sibling!

Coalescing

Remember to delete the
appropriate key from parent

* Deletion can “propagate” all the way up to the root of the
tree (not illustrated here)
* When the root becomes empty, the tree “shrinks” by one level

Performance analysis

* How many I/O’s are required for each operation?
* h,the (more or less)
* Plus one or two to manipulate actual records
* Plus O(h) for reorganization (rare if f is large)
* Minus one if we cache the root in memory
* How big is h?
* Roughly logganout N, where N is the number of records
* B*-tree properties guarantee that fan-out is least f/2 for
all non-root nodes

* Fan-out is typically large (in hundreds)—many keys and
pointers can fit into one block

* A 4-level B*-tree is enough for “typical” tables

3/26/19

B*-tree in practice

» Complex reorganization for deletion often is not
implemented (e.g., Oracle)
* Leave nodes less than half full and periodically
reorganize
* Most commercial DBMS use B*-tree instead of
hashing-based indexes because B*-tree handles
range queries

The Halloween Problem

* Story from the early days of System R...

* There is a B*-tree index on Payroll(salary)
* The update never stopped (why?)

* Solutions?
¢ Scanindex inreverse, or
« Before update, scan index to create a “to-do” list, or
* During update, maintain a “done” list, or
* Tag every row with transaction/statement id

https://en.wikipedia.org/wiki/Halloween_Problem

B*-tree versus ISAM

* ISAM is more ; B*-tree is more

* ISAM can be more compact (at least initially)
* Fewer levels and 1/O’s than B*-tree
* Overtime, ISAM may not be balanced
* Cannot provide guaranteed performance as B*-tree does

B+-tree versus B-tree

* B-tree: why not store records (or record pointers)
in non-leaf nodes?
* These records can be accessed with fewer 1/0’s

* Problems?
* Storing more data in a node decreases fan-out and
increases h
* Records in leaves require more I/O’s to access
* Vast majority of the records live in leaves!

Beyond ISAM, B-, and B*-trees

* Other tree-based indexes: R-trees and variants,
GiST, etc.
* How about binary tree?

vs.

* Hashing-based indexes: extensible hashing, linear
hashing, etc.

* Text indexes: inverted-list index, suffix arrays, etc.
* Other tricks: bitmap index, bit-sliced index, etc.

Clustered vs. Unclustered Index

* If order of data records in a file is the same as, or ‘close to’,
order of data entries in an index, then clustered, otherwise
unclustered

* How does it affect # of page accesses? (in class)

Index entries
CLUSTERED ; i direct search for UNCLUSTERED

(Index File) K<

AnBooo I ()l a[u (]

Data Records

Clustered vs. Unclustered Index
* How does it affect # of page accesses? (in class)

* Assume 12 users with age = 50
* Assume one page can hold 4 User records

* Suppose accessing the data entry (-ies) require 3 10s in a B+-tree, which
contain pointers to the data records (all pointers in the same node)

3/26/19

Hash vs. Tree Index

* Hash indexes can only handle equality queries
(requires hash index on (age))
(requires hash index on R.A or S.A)

(requires hash index on
(age, name))

* Cannot handle range queries

* need to use tree indexes (more common)
« Treeindex on (age), or (age, name) works, but not (name, age) - why?

But are more amenable to parallel processing
* late hash-based join

* Performance depends on how good the hash function is (whether the
hash function distributes data uniformly and whether data has skew)

* Details of hash-based dynamic index (extendible hashing, linear
hashing) not covered in this class

Trade-offs for Indexes

* Should we use as many indexes as possible?

Trade-offs for Indexes

* Should we use as many indexes as possible?

* Indexes can make
* queries go faster
* updates slower

* Require disk space, too

Index-Only Plans

* Anumber of queries can be answered without retrieving any
tuples from one or more of the relations involved if a suitable
index is available

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

<E.dno,E.sal>
Tree index!
<E.dno> <E. age,E.sal>
Tree index!
e M [SELECT AVG(E.sal)
¢ Forindex-only FROM Emp E

strategies, clustering is

X WHERE E.age=25 AND
not important

E.sal BETWEEN 3000 AND 5000

