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Announcements (Tue., Mar. 26)

• Homework #3 due tomorrow 03/27
• 5% per hour late penalty

• Project milestone #2 due Friday 03/29
• one report per group

• HW4:
• one problem (similar to exam problems) on every 

week’s lectures due in 7 days (see piazza post)
• gradiance problems are due in two weeks

• Short weekly update required from all project 
group members by each Friday on your piazza 
threads
• see piazza
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Today’s lecture

• Index

• Dense vs. Sparse
• Clustered vs. unclustered
• Primary vs. secondary
• Tree-based vs. Hash-index
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What are indexes for?

• Given a value, locate the record(s) with this value
SELECT * FROM RWHERE A = value;
SELECT * FROM R, SWHERE R.A = S.B;

• Find data by other search criteria, e.g.
• Range search

SELECT * FROM RWHERE A > value;
• Keyword search

4

database indexing Search

Focus
of this
lecture



High level structure of indexes
• (in class)
• what is a search key k?
• what is data entry (index entry) k*?
• how do we access a record?
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Dense and sparse indexes
• Dense: one index entry for each search key value

• One entry may “point” to multiple records (e.g., two users named Jessica)
• Sparse: one index entry for each block

• Records must be clustered according to the search key

6

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5



Dense versus sparse indexes

• Index size
• Sparse index is smaller

• Requirement on records
• Records must be clustered for sparse index

• Lookup
• Sparse index is smaller and may fit in memory
• Dense index can directly tell if a record exists

• Update
• Easier for sparse index
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Primary and secondary indexes

• Primary index
• Created for the primary key of a table
• Records are usually clustered by the primary key
• Can be sparse

• Secondary index
• Usually dense

• SQL
• PRIMARY KEY declaration automatically creates a 

primary index, UNIQUE key automatically creates a 
secondary index
• Additional secondary index can be created on non-key 

attribute(s):
CREATE INDEX UserPopIndex ON User(pop);
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ISAM

• What if an index is still too big?
• Put a another (sparse) index on top of that!
FISAM (Index Sequential Access Method), more or less
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100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …    

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: look up 197



Updates with ISAM

• Overflow chains and empty data blocks degrade 
performance
• Worst case: most records go into one long chain, so 

lookups require scanning all data!
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100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …    

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: insert 107

107 Overflow block

Example: delete 129



B+-tree

• A hierarchy of nodes with intervals
• Balanced (more or less): good performance guarantee
• Disk-based: one node per block; large fan-out
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Sample B+-tree nodes
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to records with these 𝑘 values;
or, store records directly in leaves

to next leaf node in sequenceLeaf

to keys
100 ≤ 𝑘



B+-tree balancing properties

• Height constraint: all leaves at the same lowest level
• Fan-out constraint: all nodes at least half full 

(except root)

Max #   Max # Min # Min #
pointers keys active pointers keys

Non-leaf 𝑓 𝑓 − 1 ⌈𝑓/2⌉ ⌈𝑓/2⌉ − 1
Root 𝑓 𝑓 − 1 2 1
Leaf 𝑓 𝑓 − 1 ⌊𝑓/2⌋ ⌊𝑓/2⌋
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Lookups

• SELECT * FROM RWHERE k = 179;
• SELECT * FROM RWHERE k = 32;
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Range query

• SELECT * FROM RWHERE k > 32 AND k < 179;
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Insertion

• Insert a record with search key value 32
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And insert it right there



Another insertion example

• Insert a record with search key value 152
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Node splitting
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More node splitting
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• In the worst case, node splitting can “propagate” all the way up 
to the root of the tree (not illustrated here)
• Splitting the root introduces a new root of fan-out 2 and causes the tree 

to grow “up” by one level



Deletion

• Delete a record with search key value 130
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Stealing from a sibling
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Another deletion example

• Delete a record with search key value 179
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Coalescing

• Deletion can “propagate” all the way up to the root of the 
tree (not illustrated here)
• When the root becomes empty, the tree “shrinks” by one level
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Performance analysis

• How many I/O’s are required for each operation?
• ℎ, the height of the tree (more or less)
• Plus one or two to manipulate actual records
• Plus 𝑂 ℎ for reorganization (rare if 𝑓 is large)
• Minus one if we cache the root in memory

• How big is ℎ?
• Roughly log56789: 𝑁, where 𝑁	is the number of records
• B+-tree properties guarantee that fan-out is least 𝑓/2 for 

all non-root nodes 
• Fan-out is typically large (in hundreds)—many keys and 

pointers can fit into one block
• A 4-level B+-tree is enough for “typical” tables
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B+-tree in practice

• Complex reorganization for deletion often is not 
implemented (e.g., Oracle)
• Leave nodes less than half full and periodically 

reorganize

• Most commercial DBMS use B+-tree instead of 
hashing-based indexes because B+-tree handles 
range queries
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The Halloween Problem

• Story from the early days of System R…
UPDATE Payroll
SET salary = salary * 1.1
WHERE salary >= 100000;
• There is a B+-tree index on Payroll(salary)
• The update never stopped (why?)

• Solutions?
• Scan index in reverse, or
• Before update, scan index to create a “to-do” list, or
• During update, maintain a “done” list, or
• Tag every row with transaction/statement id
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https://en.wikipedia.org/wiki/Halloween_Problem



B+-tree versus ISAM

• ISAM is more static; B+-tree is more dynamic
• ISAM can be more compact (at least initially)
• Fewer levels and I/O’s than B+-tree

• Overtime, ISAM may not be balanced
• Cannot provide guaranteed performance as B+-tree does
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B+-tree versus B-tree

• B-tree: why not store records (or record pointers) 
in non-leaf nodes?
• These records can be accessed with fewer I/O’s

• Problems?
• Storing more data in a node decreases fan-out and 

increases ℎ
• Records in leaves require more I/O’s to access
• Vast majority of the records live in leaves!
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Beyond ISAM, B-, and B+-trees

• Other tree-based indexes: R-trees and variants, 
GiST, etc. 
• How about binary tree?

• Hashing-based indexes: extensible hashing, linear 
hashing, etc.
• Text indexes: inverted-list index, suffix arrays, etc.
• Other tricks: bitmap index, bit-sliced index, etc.
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• If order of data records in a file is the same as, or `close to’, 
order of data entries in an index, then clustered, otherwise 
unclustered

• How does it affect # of page accesses? (in class)

Index entries

Data entries

direct search for 

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED
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Clustered vs. Unclustered Index



• How does it affect # of page accesses? (in class)
• SELECT * FROM USER WHERE age = 50

• Assume 12 users with age = 50
• Assume one page can hold 4 User records
• Suppose accessing the data entry (-ies) require 3 IOs in a B+-tree, which 

contain pointers to the data records (all pointers in the same node)
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Clustered vs. Unclustered Index



Hash vs. Tree Index
• Hash indexes can only handle equality queries

• SELECT * FROM R WHERE age = 5 (requires hash index on (age))
• SELECT * FROM R, S WHERE R.A = S.A (requires hash index on R.A or S.A)
• SELECT * FROM R WHERE age = 5 and name = ‘Bart’ (requires hash index on 

(age, name))

• Cannot handle range queries
• SELECT * FROM R WHERE age >= 5
• need to use tree indexes (more common)
• Tree index on (age), or (age, name) works, but not (name, age) – why?

• + But are more amenable to parallel processing
• late hash-based join

• Performance depends on how good the hash function is (whether the 
hash function distributes data uniformly and whether data has skew)

• Details of hash-based dynamic index (extendible hashing, linear 
hashing) not covered in this class
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Trade-offs for Indexes
• Should we use as many indexes as possible?
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Trade-offs for Indexes
• Should we use as many indexes as possible?

• Indexes can make 
• queries go faster
• updates slower

• Require disk space, too
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Index-Only Plans
• A number of queries can be answered without retrieving any 

tuples from one or more of the relations involved if a suitable 
index is available

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY  E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY  E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE  E.age=25 AND

E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>
Tree index!

<E. age,E.sal>
Tree index!
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• For index-only 
strategies, clustering is 
not important


