
Indexing
Introduction to Databases
CompSci 316 Spring 2019

Announcements (Tue., Mar. 26)

• Homework #3 due tomorrow 03/27
• 5% per hour late penalty

• Project milestone #2 due Friday 03/29
• one report per group

• HW4:
• one problem (similar to exam problems) on every

week’s lectures due in 7 days (see piazza post)
• gradiance problems are due in two weeks

• Short weekly update required from all project
group members by each Friday on your piazza
threads
• see piazza

2

Today’s lecture

• Index

• Dense vs. Sparse
• Clustered vs. unclustered
• Primary vs. secondary
• Tree-based vs. Hash-index

3

Related

What are indexes for?

• Given a value, locate the record(s) with this value
SELECT * FROM RWHERE A = value;
SELECT * FROM R, SWHERE R.A = S.B;

• Find data by other search criteria, e.g.
• Range search

SELECT * FROM RWHERE A > value;
• Keyword search

4

database indexing Search

Focus
of this
lecture

High level structure of indexes
• (in class)
• what is a search key k?
• what is data entry (index entry) k*?
• how do we access a record?

5

Dense and sparse indexes
• Dense: one index entry for each search key value

• One entry may “point” to multiple records (e.g., two users named Jessica)
• Sparse: one index entry for each block

• Records must be clustered according to the search key

6

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

Dense versus sparse indexes

• Index size
• Sparse index is smaller

• Requirement on records
• Records must be clustered for sparse index

• Lookup
• Sparse index is smaller and may fit in memory
• Dense index can directly tell if a record exists

• Update
• Easier for sparse index

7

Primary and secondary indexes

• Primary index
• Created for the primary key of a table
• Records are usually clustered by the primary key
• Can be sparse

• Secondary index
• Usually dense

• SQL
• PRIMARY KEY declaration automatically creates a

primary index, UNIQUE key automatically creates a
secondary index
• Additional secondary index can be created on non-key

attribute(s):
CREATE INDEX UserPopIndex ON User(pop);

8

ISAM

• What if an index is still too big?
• Put a another (sparse) index on top of that!
FISAM (Index Sequential Access Method), more or less

9

100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: look up 197

Updates with ISAM

• Overflow chains and empty data blocks degrade
performance
• Worst case: most records go into one long chain, so

lookups require scanning all data!

10

100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: insert 107

107 Overflow block

Example: delete 129

B+-tree

• A hierarchy of nodes with intervals
• Balanced (more or less): good performance guarantee
• Disk-based: one node per block; large fan-out

11
3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

Sample B+-tree nodes
12

Max fan-out: 4

12
0

15
0

18
0

to keys
100 ≤ 𝑘 < 120

to keys
120 ≤ 𝑘 < 150

to keys
150 ≤ 𝑘 < 180

to keys
180 ≤ 𝑘

Non-leaf
12

0
13

0

to records with these 𝑘 values;
or, store records directly in leaves

to next leaf node in sequenceLeaf

to keys
100 ≤ 𝑘

B+-tree balancing properties

• Height constraint: all leaves at the same lowest level
• Fan-out constraint: all nodes at least half full

(except root)

Max # Max # Min # Min #
pointers keys active pointers keys

Non-leaf 𝑓 𝑓 − 1 ⌈𝑓/2⌉ ⌈𝑓/2⌉ − 1
Root 𝑓 𝑓 − 1 2 1
Leaf 𝑓 𝑓 − 1 ⌊𝑓/2⌋ ⌊𝑓/2⌋

13

Lookups

• SELECT * FROM RWHERE k = 179;
• SELECT * FROM RWHERE k = 32;

14
3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

17
9

Not found

Range query

• SELECT * FROM RWHERE k > 32 AND k < 179;

15
3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

10
0

10
1

11
0

12
0

13
0

15
0

15
6

Look up 32…

And follow next-leaf pointers until you hit upper bound

35

Insertion

• Insert a record with search key value 32

16
3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up where the
inserted key
should go…

32

And insert it right there

Another insertion example

• Insert a record with search key value 152

17

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

Oops, node is already full!

Node splitting
18

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

15
6

Need to add to parent node a pointer
to the newly created node

Oops, that node
becomes full!

More node splitting
19

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

12
0

15
0

15
6

Need to add to parent node a pointer
to the newly created node

• In the worst case, node splitting can “propagate” all the way up
to the root of the tree (not illustrated here)
• Splitting the root introduces a new root of fan-out 2 and causes the tree

to grow “up” by one level

Deletion

• Delete a record with search key value 130

20

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up the key
to be deleted…

And delete it
Oops, node is too empty!

If a sibling has more
than enough keys,
steal one!

Stealing from a sibling
21

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
6

Remember to fix the key
in the least common ancestor
of the affected nodes

Another deletion example

• Delete a record with search key value 179

22

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Cannot steal from siblings
Then coalesce (merge) with a sibling!

Coalescing

• Deletion can “propagate” all the way up to the root of the
tree (not illustrated here)
• When the root becomes empty, the tree “shrinks” by one level

23

10
0

10
1

11
0

12
0

15
0

15
6

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Remember to delete the
appropriate key from parent

Performance analysis

• How many I/O’s are required for each operation?
• ℎ, the height of the tree (more or less)
• Plus one or two to manipulate actual records
• Plus 𝑂 ℎ for reorganization (rare if 𝑓 is large)
• Minus one if we cache the root in memory

• How big is ℎ?
• Roughly log56789: 𝑁, where 𝑁	is the number of records
• B+-tree properties guarantee that fan-out is least 𝑓/2 for

all non-root nodes
• Fan-out is typically large (in hundreds)—many keys and

pointers can fit into one block
• A 4-level B+-tree is enough for “typical” tables

24

B+-tree in practice

• Complex reorganization for deletion often is not
implemented (e.g., Oracle)
• Leave nodes less than half full and periodically

reorganize

• Most commercial DBMS use B+-tree instead of
hashing-based indexes because B+-tree handles
range queries

25

The Halloween Problem

• Story from the early days of System R…
UPDATE Payroll
SET salary = salary * 1.1
WHERE salary >= 100000;
• There is a B+-tree index on Payroll(salary)
• The update never stopped (why?)

• Solutions?
• Scan index in reverse, or
• Before update, scan index to create a “to-do” list, or
• During update, maintain a “done” list, or
• Tag every row with transaction/statement id

26

https://en.wikipedia.org/wiki/Halloween_Problem

B+-tree versus ISAM

• ISAM is more static; B+-tree is more dynamic
• ISAM can be more compact (at least initially)
• Fewer levels and I/O’s than B+-tree

• Overtime, ISAM may not be balanced
• Cannot provide guaranteed performance as B+-tree does

27

B+-tree versus B-tree

• B-tree: why not store records (or record pointers)
in non-leaf nodes?
• These records can be accessed with fewer I/O’s

• Problems?
• Storing more data in a node decreases fan-out and

increases ℎ
• Records in leaves require more I/O’s to access
• Vast majority of the records live in leaves!

28

Beyond ISAM, B-, and B+-trees

• Other tree-based indexes: R-trees and variants,
GiST, etc.
• How about binary tree?

• Hashing-based indexes: extensible hashing, linear
hashing, etc.
• Text indexes: inverted-list index, suffix arrays, etc.
• Other tricks: bitmap index, bit-sliced index, etc.

29

vs.

• If order of data records in a file is the same as, or `close to’,
order of data entries in an index, then clustered, otherwise
unclustered

• How does it affect # of page accesses? (in class)

Index entries

Data entries

direct search for

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

30

Clustered vs. Unclustered Index

• How does it affect # of page accesses? (in class)
• SELECT * FROM USER WHERE age = 50

• Assume 12 users with age = 50
• Assume one page can hold 4 User records
• Suppose accessing the data entry (-ies) require 3 IOs in a B+-tree, which

contain pointers to the data records (all pointers in the same node)

31

Clustered vs. Unclustered Index

Hash vs. Tree Index
• Hash indexes can only handle equality queries

• SELECT * FROM R WHERE age = 5 (requires hash index on (age))
• SELECT * FROM R, S WHERE R.A = S.A (requires hash index on R.A or S.A)
• SELECT * FROM R WHERE age = 5 and name = ‘Bart’ (requires hash index on

(age, name))

• Cannot handle range queries
• SELECT * FROM R WHERE age >= 5
• need to use tree indexes (more common)
• Tree index on (age), or (age, name) works, but not (name, age) – why?

• + But are more amenable to parallel processing
• late hash-based join

• Performance depends on how good the hash function is (whether the
hash function distributes data uniformly and whether data has skew)

• Details of hash-based dynamic index (extendible hashing, linear
hashing) not covered in this class

32

Trade-offs for Indexes
• Should we use as many indexes as possible?

33

Trade-offs for Indexes
• Should we use as many indexes as possible?

• Indexes can make
• queries go faster
• updates slower

• Require disk space, too

34

Index-Only Plans
• A number of queries can be answered without retrieving any

tuples from one or more of the relations involved if a suitable
index is available

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND

E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.sal>
Tree index!

<E. age,E.sal>
Tree index!

35

• For index-only
strategies, clustering is
not important

