Query Processing

Introduction to Databases
CompSci 316 Spring 2019

E. DUKE
COMPUTER SCIENCE

Announcements (Thu., Mar. 28)

* Project milestone #2 due this Friday

* Remember to submit project update on piazza by
Friday

Overview

* Many different ways of processing the same query
* Scan? Sort? Hash? Use an index?

e All have dlfferent performance characteristics and/or
make different assumptions about data

* Best choice depends on the situation
* Implement all alternatives
* Let the choose at run-time

si=t=ls

Notation j \j |

* Relations: 7,

* Tuples: 7,
* Number of tuples: |R|,

 Number of disk blocks: ,

* Number of memory blocks available:

e Cost metric
— S
* Number of I/O’s |

-@@ requirement

i1]{)?1\7(\.{\‘ -
Rkt LA TS
O’(_),O} ’OI‘-"._"' ?O?(‘\,‘)1 7 N PN

A ! 10100010 GO0

30C 1010

100110101C
Y0010 Q100111 ,
)v}((88 010101 ;8:?1501 11010
10101 \}139](\\}1?0; 1010{}01
101001 wy 110101011

)11](}1\) (‘

()1 Yatz
AV, l')‘

I\'\’}\li,'\l. Cra

11 \o_w \

(‘, '-lQ'

."I,\ '\"\l]
l\."-‘

NN

T
.11 V1 ¢ \“‘
A% T

G e

v X

\e €

1

(3

O-

Table scan Z

* Scan table R and process the query
over R
of R without duplicate elimination

¢ 1/O’s:
* Trick for selection: stop early if it is a lookup by key

* Memory requirement:

* Not counting the cost of writing the result out
* Same for any algorithm!

* Maybe not needed—results may be pipelined into
another operator

Nested-loop join

=5
NR S 2 v
For each block of R, and for each™r in the block:
For each block of S, and for each s in the block:
Output rs if p evaluates to true overr and s
* Ris called the outer table; S is called the inner table
o 1/0’s: B(R) + |R| - B(S) <—

* Memory requirement: 3

V*
'

o\;g

°RNpS

* R outer, S inner

* For each block of R, for each block

For each r in the R block, for each s il% the §
block: ...

e« 1/0’s: B(R) + B(R) - B(S)
* Memory requirement: same as before \zg

(‘(b

TO 2
!

More improvements

* Make use of available memory

* Stuff memory with as much of R as possible, stream S
by, and join every S tuple with all R tuples in memory

e |/O’s:
* Or, roughly:
* Memory requirement: M/ (as much as possible)
* Which table would you pick as the outer?

6m{\@\\ens

T —

Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail_sorter#tmediaviewer/File:Mail_sorting,1951.jpg

1"

External merge sort ,

Remember (internal-memory) merge sort? D
Problem: sort R, but R does not fit in memory

: read M blocks
of R at a time, them,

P |
and write out a

[]

(M—-1) 6O

Ievdel -0 runs at a time, L]
and write out a

2t D
0 6 |v

(M — 1) level-1 runsat a time, and write

out a

produces one sorted run

el-1

i 1\ ‘

Toy example

* 3 memory blocks available; each holds one number

-Input:1,7,4;5,»,2:_§;33‘_6/é 0)/ ‘ ’3 O
e Pass O 2 .

17,4 (08)7) o me

* 9’673_)3)679

P—

* Pass 1
*(1,)4,7 42)5,8 = 1,2, 4,5,7,8
*3,6,9 S

* Pass 2 (final)
* 17274)577)8+3)679_)1)2’37475)6)7)8)9

g
= —F 7 < 2 d

Analysis

: read M blocks of R at a time, sort them, and
write out a level-0 run

e There are [#} level—Ocj(orted runs

: merge (M — 1) level-(i — 1) runs at a time,
and write out a level-i run

* (M — 1) memory blocks for input, 1 to buffer output
of level—(i—1) runs}
M—1

e # of level-i runs = [

produces one sorted run

Performance of(external merge sort’

—

* Number of passes: O
> R b

¢ |/O’s

* Multiply by 2 - B(R): each pass reads the entire relation
once and writes it once

 Subtract B(R) for the final pass
* Roughly, this isa é/

* Memory requirement: // (as much as possible)

Some tricks for sorting .- 5

* Double buffering /'g@/'

* Allocate an additional block for each run

* Overlap I/O with processing /’@

* Trade-off: smaller fan-in (more passes) @%
* Blocked I/O wﬂ’

* Instead of reading/writing one disk block at time,
read/write a bunch (“cluster”)

* More sequential [/QO’s-
* Trade-off: larger cluster — smaller fan-in (more passes)

—_—

* Nested loop join — NLJ

* R\Join S

 Forallr\inR
 Foralls\inS

* Checkifrand s join
* If yes, then output (r, s)

Sort-merge join

* Sort R and S by their join attributes; then merge
T, s = the first tuples in sorted R and §
Repeat until one of R and S is exhausted:

If r.A > s.B then s =next tuplein §

elseif r.A < s.B thenr = next tuplein R

else output all matching tuples, and
r,s=nextinRandS

* 1/O’s: (always?)
* In most cases (e.g., join of key and foreign key)
* Worst case is : everything joins

- Mn F on F un
h i v \”© ©n ©
AR AU U

— NN MM OO

I T O |
M AAMAA
o oo & % i
LN u ”n i 1

— N ML NI O
LI VI | Y O |
NSNS S

X OO @ T ¢ o0

Example of merge join

2 DOD D 0\ an o \/L\;
6 W\ =
@ X/é

e
[£

o /(0\ \‘5 K \@
sl

23

Optimization of SMJ

* Idea: combine join with the (last) merge phase of merge sort

 Sort: produce sorted runs for R and S such that there are
fewer than M of them total

* Merge and join: merge the runs of R, merge the runs of S, and
merge-join the result streams as thex are generated!
AN [§

o
ST Memory
ml\ Merge
S R{ = \
8 ol -
5 s{ i i
d \ l\/\erge

Performance of SM

. If@ompletes in two passes:
* 1/0’s:3 - (B(R) + B(S)) -why 32
* Memory requirement

* We must have enous o1y o accommodate one bl
from each ru

~—s——

M > JB(R) + B(S

* [f SMJ cannot complete in two passes:

* Repeatedly merge to reduce the number of runsas -~ 67\
necessary before final merge and join

25

Other sort-based algorlthms T,

. w difference, intersection 4®)\

e More or less like SMJ

* Duplication elimination 2

+ External merge sort

* Eliminate duplicates in sort and merge ,5

- Grouping and aggregation 4
* External merge sort, by group-by columns &)

W Trick: produce “partial” aggregate values in each run, and
) mbine them during merge

=

< 4

Hashing-based algorithms

http://global.rakuten.com/en/store/citygas/item/041233/

26

R Mg =55 S

* Main idea
* Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and S

* If r.A and s. B get hashed to different partitions, they
don’t joiQ\

<D, !
4 5, o
| | Nested-loop join
considers all slot

Hash join considers only
those along the diagonal!

27

(D) N o d 2
Partitioning phase SICE W

—
* Partition R and § according to the same hash
function on their join attributes

___ Disk 3

=

N

artitions of R

&
3
3
V)
- ooEE)

@Probing phase

* Read in each partition of R, stream in the \A
corresponding partition of S, join e

* Typically build a hash table for the partition of R
* Not the same hash function used for partition, of course!

|

\ .
& < Disk 3 emory n
~ ‘ —2
e (EEEE
R <
" P
partitions | pm— @
| I [stream| \L/FOT each S tuple,
o J |) (@) probe and joi
<
partitions | | p———
/\\ I

<\

30

Performance of (two-pass) hash join

* If hash join completes in two passes:
* 1/O’s: @) 0(¥
* Memory requirement:

* In the probing phase, we shg

atehave enough memory to fit
e - S n« \€ e

one partition of R:
o PP Y

. N~
* We can always pick R to be the smaller relation, so:

.
-
W —

Generalizing for larger inputs

* What if a partition is too large for memory?

» Read it back in and partition it again!
* See the duality in multi-pass merge sort here?

7/. /. \

Hash join versus SMJ

& v
(Assuming two-pass) R 4 B §> /

* |/O’s: same 2K
* Memory requirement: hash join is lower

. \/min(B(R),B(S)) +1 < +/B(R) + B(S)
* Hash join wins when two relations have very different sizes

e Other factors

* Hash join performance depends on the quality of the hash
* Might not get evenly sized buckets

* SMJ can be adapted for inequality join predicates

. ins if R and/or S are already sorted
SMJ wins if the result needs to be in sorted order

What about nested-loop join?

* May be best if many tuples join

* Example: non-equality joins that are not very selective

* Necessary for black-box predicates
* Example: WHEREUser_defined_pred(R.A, S. B)

———

Other hash-based algorithms

* Union (set), difference, intersection
* More or less like hash join

* Duplicate elimination
* Check for duplicates within each partition/bucket

* Grouping and aggregation
* Apply the hash functions to the group-by columns

* Tuples in the same group must end up in the same
partition/bucket

* Keep a running aggregate value for each group
* May not always work

Duality of sort and hash

* Divide-and-conquer paradigm
* Sorting: physical division, logical combination
* Hashing: logical division, physical combination
* Handling very large inputs 0 O
* Sorting: multi-level merge %
* Hashing: recursive partitioning

* |/O patterns

35

36

Index-based algorithms

INDICATOr:

Lotk Acfirg !
BTy |

http://il.trekearth.com/photos/28820/p2270994.jpg

39

Selection using index

* Equality predicate:
* Use an ISAM, B*-tree, or hash index on R(4)

* Range predicate:
* Usean index (e.g., ISAM or B*-tree) on R(A)
* Hash index is not applicable

* Indexes other than those on R(A) may be useful
« Example: B*-tree index on R(A, B)
* How about B*-tree index on R(B, A)?

Index versus table scan

Situations where index clearly wins:

which do not require retrieving
actual tuples
* Example:

* Primary index clustered according to search key
* One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

* Consider and a secondary, non-clustered
indexon R(A)
* Need to follow pointers to get the actual result tuples

* Say that 20% of R satisfies A > v
* Could happen even for equality predicates

* |/O’s for index-based selection:
* |/O’s for scan-based selection:
* Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

* Idea: use a value of R. A to probe the index on S(B)

* For each block of R, and for each r in the block:
Use the index on S(B) to retrieve s withs.B =1.4
Output rs

* |/O’s:
* Typically, the cost of an index lookup is 2-4 1/O’s
* Beats other join methods if |R| is not too big
* Better pick R to be the smaller relation

* Memory requirement:

Zig-zag join using ordered indexes

R Mpg=sp S

* Idea: use the ordering provided by the indexes on R(A)
and S(B) to eliminate the sorting step of sort-merge join

* Use the larger key to probe the other index
* Possibly skipping many keys that don’t match

44

Summary of techniques

* Scan
* Selection, duplicate-preserving projection, nested-loop join

* Sort
 External merge sort, sort-merge join, union (set), difference,
intersection, duplicate elimination, grouping and
aggregation
* Hash
* Hash join, union (set), difference, intersection, duplicate
elimination, grouping and aggregation
* Index
* Selection, index nested-loop join, zig-zag join

