Query Processing Introduction to Databases

CompSci 316 Spring 2019

DUKE

Announcements (Thu., Mar. 28)

- Project milestone \#2 due this Friday
- Remember to submit project update on piazza by Friday

Overview

- Many different ways of processing the same query
- Scan? Sort? Haş? Use an index?
- All have different performance characteristics and/or make different assumptions about data
- Best choice depends on the situation
- Implement all alternatives
- Let the query optimizer choose at run-time

Notation

- Relations: R, S
- Tuples: r, s
- Number of tuples: $|R|,|S|$
- Number of disk blocks: $B(R), B(S)$
- Number of memory blocks available: M
- Cost metric
- Number of I/O's
- Memory requirement

Scanning-based, algorithms

010011101010110101000101010
1010101100010100010101001010
001101010011101011011101000 01010010101101110101000110 10011010100111010110111010 00010100101011011101010001 $0101000110100111011010101 ?$ 0101110101101010011010100 p1010001010100111010101101 0100101101010101101010100 11110101010010101100010110 01000101110101101110101010 10101110010170110101010110 0101000010100100011010100 010110101100101010111010010 p0101000111010010101101011 D1100010101100010100100110 10110101101110101010001010 01110110110101110110101000 D1000100100011010100101011 100100101010111010010101008 D0111010010101101M10101021

Table scan

- Scan table R and process the query
- Selection over R
- Projection of R without duplicate elimination
- I/O's: $B(R)$
- Trick for selection: stop early if it is a lookup by key
- Memory requirement: 2
- Not counting the cost of writing the result out
- Same for any algorithm!
- Maybe not needed—results may be pipelined into another operator

Nested-loop join

$\stackrel{R}{R \cdot \bar{A}-S \cdot B}$
for all $r \in R$

- For each block of R, and for each r in the block: For each block of S, and for each s in the block: Output $r s$ if p evaluates to true over r and s
- R is called the outer table; S is called the inner table
- ITO's: $B(R)+|R| \cdot B(S) \not \subset$
- Memory requirement: 3

Improvement: block-based nested-loop join

$\Rightarrow(t)=\rho t$

Block-based Nested Loop Join

- $R \bowtie_{p} S$
- R outer, S inner
- For each block of R, for each block of s:

For each r in the R block, for each s in the S block: ...

- ITO's: $B(R)+B(R) \cdot B(S)$
- Memory requirement: same as before

More improvements

- Make use of available memory
- Stuff memory with as much of R as possible, stream S by, and join every S tuple with all R tuples in memory
- I/O's: $B(R)+\left\lceil\frac{B(R)}{M-2}\right\rceil \cdot B(S)$
- Or, roughly: $B(R) \cdot B(S) / M$
- Memory requirement: M (as much as possible)
- Which table would you pick as the outer?

Sorting-based algorithms

External merge sort

Remember (internal-memory) merge sort? Problem: sort R, but R does not fit in memory

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
- Pass 1: merge $(M-1)$ level-0 runs at a time, and write out a level-1 run

 out a level-2 run
- Final pass produces one sorted run

Toy example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 3, 609 9, 6 , 3
- Pass 0
$\cdot 1,7,4 \rightarrow(1,4,7)$ run $=3$

- $5,2,8 \rightarrow 2,5,8$

$$
\cdot 9,6,3 \rightarrow 3,6,9
$$

- Pass 1
- (1, $4,7+2,5,8 \rightarrow 1,2,4,5,7,8$
- 3, 6, 9
- Pass 2 (final)

$$
\xrightarrow[4]{-1,2,4,5,7,8}+\underset{\longleftrightarrow}{3,6,9} \rightarrow \underset{\sim}{1,2,3,4,5,6,7,8,9}
$$

M blocks.

$$
\begin{aligned}
& R \rightarrow B(R) \text {. } \\
& \text { pars } \sigma \rightarrow\left\lceil\frac{B(R)}{M}\right\rceil=p_{\text {of }} \rightarrow \sin M \\
& p \text { ass -1 } \rightarrow(M-1) \text { of them } \\
& \rightarrow\left[\frac{p_{0}}{r-1}\right\rceil \text { of } \mu^{x^{i n} e}\left(r^{(n-1)}\right.
\end{aligned}
$$

Analysis

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
- There are $\left\lceil\frac{B(R)}{M}\right\rceil$ level- 0 of sorted runs
- Pass i : merge $(M-1)$ level- $(i-1)$ runs at a time, and write out a level-i run
- ($M-1$) memory blocks for input, 1 to buffer output
- \# of level- i runs $=\left\lceil\frac{\# \text { of level-(} i-1 \text {) runs }}{M-1}\right\rceil$
- Final pass produces one sorted run

Performance of external merge sort

- Number of passes: $\underset{\text { - } \mid \text { 'S's }}{\left\lceil\log _{M-1}\left\lceil\frac{B(R)}{M}\right\rceil\right]}+\underset{\longrightarrow}{1}$ 中 pars 0 •
- I/O's
- Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
- Subtract $B(R)$ for the final pass
- Roughly, this is $O\left(B(R) \times \log _{M} B(R)\right)$
- Memory requirement: M (as much as possible)

Some tricks for sorting

- Double buffering

- Allocate an additional block for each run
- Overlap I/O with processing
- Trade-off: smaller fan-in (more passes)
- Blocked I/O
- Instead of reading/writing one disk block at time, read/write a bunch ("cluster")
- More sequential I/O's.
- Trade-off: larger cluster \rightarrow smaller fan-in (more passes)
- Nested loop join - NLJ
- $\mathrm{R} \backslash$ Join S
- For all r \backslash in R
- For all s \in S
- Check if r and s join
- If yes, then output (r, s)

Sort-merge join

$R \bowtie_{R . A=S . B} S$

- Sort R and S by their join attributes; then merge $r, s=$ the first tuples in sorted R and S
Repeat until one of R and S is exhausted:
If $r . A>s . B$ then $s=$ next tuple in S else if $r . A<s . B$ then $r=$ next tuple in R else output all matching tuples, and $r, s=$ next in R and S
- I/O's: sorting $+2 B(R)+2 B(S)$ (always?)
- In most cases (e.g., join of key and foreign key)
- Worst case is $B(R) \cdot B(S)$: everything joins

Example of merge join

$$
\begin{array}{llc}
R: & S: & R \bowtie_{R \cdot A=S \cdot B} S: \\
r_{1} \cdot A=1 & \Rightarrow s_{1} \cdot B=1 & r_{1} s_{1} \\
r_{2} \cdot A=3 & \Rightarrow s_{2} \cdot B=2 & r_{2} s_{3} \\
r_{3} \cdot A=3 & \Rightarrow s_{3} \cdot B=3 & r_{2} s_{4} \\
r_{4} \cdot A=5 & s_{4} \cdot B=3 & r_{3} s_{3} \\
r_{5} \cdot A=7 & \Rightarrow s_{5} \cdot B=8 & r_{3} s_{4} \\
r_{6} \cdot A=7 & & r_{7} s_{5}
\end{array}
$$

RDDDDD

Optimization of SMJ

- Idea: combine join with the (last) merge phase of merge sort
- Sort: produce sorted runs for R and S such that there are fewer than M of them total
- Merge and join: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!

Performance of SM

- If $S M J$ completes in two passes:
- ITO's: $3 \cdot(B(R)+B(S))$ - why 3?
- Memory requirement
- We must have enough memory to accommodate one blog from each run $M>\frac{B(R)}{M}+\frac{B(S)}{M^{-}}$
d $M>\sqrt{B(R)+B(S)}$
- If SMJ cannot complete in two passes:
- Repeatedly merge to reduce the number of runs as necessary before final merge and join

Other sort-based algorithms

- Union (set), difference, intersection
- More or less like SMJ
- Duplication elimination
- External merge sort
- Eliminate duplicates in sort and merge
- Grouping and aggregation
- External merge sort, by group-by columns

Hashing-based algorithms

$$
h(k)=k \bmod 3
$$

- Main idea
- Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
- If $r . A$ and $s . B$ get hashed to different partitions, they don't join

Partitioning phase

- Partition R and S according to the same hash function on their join attributes

Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
- Typically build a hash table for the partition of R
- Not the same hash function used for partition, of course

Performance of (two-pass) hash join

- If hash join completes in two passes:
- I/O's: $3 \cdot(B(R)+B(S))$.
- Memory requirement:

- In the probing phase, we shounave enough memory to fit

- We can always pick R to be the smaller relation, so:

Generalizing for larger inputs

-What if a partition is too large for memory?

- Read it back in and partition it again!
- See the duality in multi-pass merge sort here?

Hash join versus SMJ

(Assuming two-pass)

- I/O's: same $B \times(B R+B S)$
- Memory requirement: hash join is lower
- $\sqrt{\min (B(R), B(S))}+1<\sqrt{B(R)+B(S)}$
- Hash join wins when two relations have very different sizes
- Other factors
- Hash join performance depends on the quality of the hash
- Might not get evenly sized buckets
- SMJ can be adapted for inequality join predicates
- SML rans if R and/or S are already sorted
- SMJ wins if the result needs to be in sorted order

What about nested-loop join?

- May be best if many tuples join
- Example: non-equality joins that are not very selective
- Necessary for black-box predicates
- Example: WHERE user_defined_pred(R.A,S.B)

Other hash-based algorithms

- Union (set), difference, intersection
- More or less like hash join
- Duplicate elimination
- Check for duplicates within each partition/bucket
- Grouping and aggregation
- Apply the hash functions to the group-by columns
- Tuples in the same group must end up in the same partition/bucket
- Keep a running aggregate value for each group
- May not always work

Duality of sort and hash

- Divide-and-conquer paradigm
- Sorting: physical division, logical combination
- Hashing: logical division, physical combination
- Handling very large inputs
- Sorting: multi-level merge
- Hashing: recursive partitioning
- I/O patterns

- Sorting: sequential write, random read (merge)
- Hashing: random write, sequential read (partition)

Index-based algorithms

Selection using index

- Equality predicate: $\sigma_{A=v}(R)$
- Use an ISAM, B^{+}-tree, or hash index on $R(A)$
- Range predicate: $\sigma_{A>v}(R)$
- Use an ordered index (e.g., ISAM or B^{+}-tree) on $R(A)$
- Hash index is not applicable
- Indexes other than those on $R(A)$ may be useful
- Example: B^{+}-tree index on $R(A, B)$
- How about B^{+}-tree index on $R(B, A)$?

Index versus table scan

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
- Example: $\pi_{A}\left(\sigma_{A>v}(R)\right)$
- Primary index clustered according to search key
- One lookup leads to all result tuples in their entirety

Index versus table scan (cont'd)

BUT(!):

- Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on $R(A)$
- Need to follow pointers to get the actual result tuples
- Say that 20\% of R satisfies $A>v$
- Could happen even for equality predicates
- I/O's for index-based selection: lookup $+20 \%|R|$
- I/O's for scan-based selection: $B(R)$
- Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

$R \bowtie_{R . A=S . B} S$

- Idea: use a value of R. A to probe the index on $S(B)$
- For each block of R, and for each r in the block:

Use the index on $S(B)$ to retrieve s with $s . B=r . A$
Output $r s$

- I/O's: $B(R)+|R| \cdot$ (index lookup)
- Typically, the cost of an index lookup is 2-4 I/O's
- Beats other join methods if $|R|$ is not too big
- Better pick R to be the smaller relation
- Memory requirement: 3

Zig-zag join using ordered indexes

$R \bowtie_{R . A=S . B} S$

- Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
- Use the larger key to probe the other index
- Possibly skipping many keys that don't match

Summary of techniques

- Scan
- Selection, duplicate-preserving projection, nested-loop join
- Sort
- External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Hash
- Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Index
- Selection, index nested-loop join, zig-zag join

