Query Processing

Introduction to Databases
CompSci 316 Spring 2019

COMPUTER SCIENCE

Announcements (Thu., Mar. 28)

* Project milestone #2 due this Friday

* Remember to submit project update on piazza by
Friday

Overview

* Many different ways of processing the same query
* Scan? Sort? Hash? Use an index?
* All have different performance characteristics and/or
make different assumptions about data
* Best choice depends on the situation
* Implement all alternatives
* Let the choose at run-time

Notation

e Relations: R,

* Tuples: 7,

* Number of tuples: ||,
 Number of disk blocks: ,

* Number of memory blocks available:

* Cost metric
* Number of I/O’s
* Memory requirement

Scanning-based algorithms

07110101001 101010001 101001000
oroor110?010110101000101010
10101011C00101C001010100101
)01101010011101011011101000
pO1010010101101110101000110
10011010100111010110111010
?OO?OIOO)OIO’1011101010001
)10}000710MN\?1H)} 3
.OIO"le“‘TO 10
O1LJJ‘O’O’wO’11
C’v:1011 1010101
)1 1 }()mum"\'ﬂ*m

1 U1 "Ln'l Y
\: f"‘r"'.’)':’ 0101 (X m-z.{'
- y

." :'1_\‘1’.’\'11“."‘ /\1,\],\{"

NN

1]’ \‘ \ ,..,\.,

Table scan

* Scan table R and process the query
over R
of R without duplicate elimination

* |/O’s:
* Trick for selection: stop early if it is a lookup by key

* Memory requirement:

* Not counting the cost of writing the result out
* Same for any algorithm!

* Maybe not needed—results may be pipelined into
another operator

Nested-loop join

* For each block of R, and for each r in the block:
For each block of S, and for each s in the block:
Output rs if p evaluates to true overr and s

* R is called the table; S is called the table
e |/O’s:
* Memory requirement:

Improvement:

Block-based Nested Loop Join

* R outer, Sinner

* For each block of R, for each block of S:

For each r in the R block, for each sinthe §
block: ...

e |/O’s:
* Memory requirement: same as before

More improvements

* Make use of available memory

* Stuff memory with as much of R as possible, stream §
by, and join every S tuple with all R tuples in memory

e |/O’s:
* Or, roughly:
* Memory requirement: M (as much as possible)

* Which table would you pick as the outer?

Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail sorter#mediaviewer/File:Mail sorting,1951.jpg

10

External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

:read M blocks
of R at a time, them, .
and write out a

(M —1)]
level-0 runs at a time,
and write out a

LCCd

)
)

-:} Lev

¥_/

(M — 1) level-1 runs at a time, and write

out a

produces one sorted run

el-1

Toy example

* 3 memory blocks available; each holds one number

° InPUt: 1) 7) 4) 5) 2) 8) 3) 6) 9
e Pass O

*1,7,421,4,7
° 5)278927578

°*9,6,323,6,9
e Pass 1

*1,4,7+2,58->12,4,5,7,8
*3,6,9

* Pass 2 (final)
*1,24,57,8+3,6,9>1,2,3,4,5,6,7,8,9

Analysis

: read M blocks of R at a time, sort them, and
write out a level-0 run

 There are [#\ level-0 sorted runs

: merge (M — 1) level-(i — 1) runs at a time,
and write out a level-i run

* (M — 1) memory blocks for input, 1 to buffer output
of level—(i—1) runs}
M-1

produces one sorted run

e # of level-i runs = [

Performance of external merge sort

* Number of passes:

* |/O’s
* Multiply by 2 - B(R): each pass reads the entire relation
once and writes it once

* Subtract B(R) for the final pass
* Roughly, this is
* Memory requirement: M (as much as possible)

Some tricks for sorting

* Double buffering
* Allocate an additional block for each run
* Overlap 1/O with processing
* Trade-off: smaller fan-in (more passes)

* Blocked I/O

* Instead of reading/writing one disk block at time,
read/write a bunch (“cluster”)

* More sequential 1/O’s
* Trade-off: larger cluster — smaller fan-in (more passes)

Sort-merge join

* Sort R and S by their join attributes; then merge
T, S = the first tuplesin sorted R and §
Repeat until one of R and S is exhausted:

If r.A > s.B then s = next tuplein §

elseifr.A < s.B thenr =next tuplein R

else output all matching tuples, and
r,s=nextinR andS

e |/O’s:
* In most cases (e.g., join of key and foreign key)
* Worst case is : everything joins

- N T o™ <F 1
O M N Y

(qp)]
ARG G QL QO

—ANM M OO

T T T (|
Q@@ 0
hawaganun

— N xDNO
I I | L L I |
LN S

E OO I OO0

Example of merge join

18

Optimization of SMJ

* Idea: combine join with the (last) merge phase of merge sort

* Sort: produce sorted runs for R and S such that there are
fewer than M of them total

* Merge and join: merge the runs of R, merge the runs of S, and
merge-join the result streams as they are generated!

)

+

Memory

A
Y

Merge

Join
~ [

Y Y Y

Y

=\/
o

Sorted runs

Y ¥

Performance of SMJ

* If SMJ completes in two passes:
e |/O’s:
* Memory requirement

* We must have enough memory to accommodate one block
from each run:

* If SMJ cannot complete in two passes:

* Repeatedly merge to reduce the number of runs as
necessary before final merge and join

Other sort-based algorithms

* Union (set), difference, intersection
* More or less like SMJ

* Duplication elimination

* External merge sort
 Eliminate duplicates in sort and merge

* Grouping and aggregation

* External merge sort, by group-by columns

* Trick: produce “partial” aggregate values in each run, and
combine them during merge

* This trick doesn’t always work though
* Examples: SUM(DISTINCT ...), MEDIAN(...)

Hashing-based algorithms

http://global.rakuten.com/en/store/citygas/item/041233/

21

Hash join

R Xpa-sp S
e Main idea

* Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and §

* Ifr.A and s. B get hashed to different partitions, they
don’t join

2 3R 4

=0 ' —

N

Nested-loop join
considers all slots

Hash join considers only
those along the diagonal!

- -

A W ANy

22

Partitioning phase

* Partition R and S according to the same hash
function on their join attributes

Memory < Disk >
[]
-l
—~ O
[]
[]

M — 1 partitions of R
SN—— -

Same for S

Probing phase

* Read in each partition of R, stream in the
corresponding partition of S, join

 Typically build a hash table for the partition of R
* Not the same hash function used for partition, of course!

R <

partitions

S <

partitions |

< Disk >
Q——

Memory

stream
I

LN)
-

P

For each S tuple,
> [] probe and join

Performance of (two-pass) hash join

* If hash join completes in two passes:
e |/O’s:
* Memory requirement:

* In the probing phase, we should have enough memory to fit
one partition of R:

* We can always pick R to be the smaller relation, so:

Generalizing for larger inputs

* What if a partition is too large for memory?

* Read it back in and partition it again!
* See the duality in multi-pass merge sort here?

26

Hash join versus SMJ

(Assuming two-pass)
* |/O’s: same
* Memory requirement: hash join is lower

. Jmin(B(R),B(S)) +1 < +/B(R) + B(S)

* Hash join wins when two relations have very different sizes

e Other factors

* Hash join performance depends on the quality of the hash
* Might not get evenly sized buckets

* SMJ can be adapted for inequality join predicates
* SMJ wins if R and/or § are already sorted
* SMJ wins if the result needs to be in sorted order

What about nested-loop join?

* May be best if many tuples join
* Example: non-equality joins that are not very selective

* Necessary for black-box predicates
* Example: WHERE user defined pred(R.A, S.B)

Other hash-based algorithms

* Union (set), difference, intersection
* More or less like hash join

* Duplicate elimination
* Check for duplicates within each partition/bucket

* Grouping and aggregation
* Apply the hash functions to the group-by columns

* Tuplesin the same group must end up in the same
partition/bucket

* Keep a running aggregate value for each group
* May not always work

Duality of sort and hash

* Divide-and-conquer paradigm
* Sorting: physical division, logical combination
* Hashing: logical division, physical combination
* Handling very large inputs
* Sorting: multi-level merge
* Hashing: recursive partitioning
* |/O patterns

* Sorting: sequential write, random read (merge)
 Hashing: random write, sequential read (partition)

Index-based algorithms

a"“‘ D
[o acenrs 4l
ANEFACTU ER | i

http://il.trekearth.com/photos/28820/p2270994.jpg

31

Selection using index

* Equality predicate:
* Use an ISAM, B*-tree, or hash index on R(A)

* Range predicate:
* Use an index (e.g., ISAM or B*-tree) on R(4)
* Hash index is not applicable

* Indexes other than those on R(A) may be useful
e Example: B*-tree index on R(4, B)
 How about B*tree index on R(B,A)?

Index versus table scan

Situations where index clearly wins:

which do not require retrieving
actual tuples
* Example:

* Primary index clustered according to search key
* One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

* Consider and a secondary, non-clustered
index on R(A)
* Need to follow pointers to get the actual result tuples

* Say that 20% of R satisfies A > v
* Could happen even for equality predicates

* |/O’s for index-based selection:
* |/O’s for scan-based selection:
* Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

* Idea: use a value of R. A to probe the index on S(B)

* For each block of R, and for each r in the block:
Use the index on S(B) to retrieve s withs.B =1r.4
Output rs

* |/O’s:
* Typically, the cost of an index lookup is 2-4 1/O’s
* Beats other join methods if |R| is not too big
* Better pick R to be the smaller relation

* Memory requirement:

Zig-zag join using ordered indexes

R Mg g=sp S

* Idea: use the ordering provided by the indexes on R(A4)
and S(B) to eliminate the sorting step of sort-merge join

* Use the larger key to probe the other index
* Possibly skipping many keys that don’t match

e) 3 4 ==y wmmg =48

= mmhy mm) g =) 12 17 =19

e

36

Summary of techniques

* Scan
* Selection, duplicate-preserving projection, nested-loop join

e Sort

* External merge sort, sort-merge join, union (set), difference,
intersection, duplicate elimination, grouping and
aggregation

e Hash

* Hash join, union (set), difference, intersection, duplicate
elimination, grouping and aggregation

* Index
* Selection, index nested-loop join, zig-zag join

