Query Processing:
A Systems View

Introduction to Databases
CompSci 316 Spring 2019

E. DUKE
COMPUTER SCIENCE

Announcements (Thu., Apr. 4)

* Monday 04/08: Hw4-problem 2 due

* Friday 04/12: HW4-problem 1 + this week’s problem
due

* Remember to submit project update on piazza
tomorrow (Friday)

A query’s trip through the DBMS

SQL uery SELECT name, uid
FROM Member, Group
| Group.gid;
<SFW>

—
<select-list> | <where-cond> Parse tree
/| <from-list>

. S S
<table> <table 7;[name, uid

Member Group Logical plan ?Member,g,-dzcmup,gid

X

il

PROJECT (name, gid)

Member Group

MERGE-JOIN (gid) Physical plan
e
SORT (81d) < AN (Group)
SCAN (Member) Result

Parsing and validation

* Detect and reject errors

* Detect and reject errors
* Nonexistent tables/views/columns?
« Insufficient access privileges?
* Type mismatches?
« Examples: AVG(name), name + pop, User UNION Member
* Also
* Expand *
* Expand view definitions
* Information required for semantic checking is found in
(which contains all schema information)

Logical plan

* Nodes are operators (often relational
algebra operators)

* There are many equivalent logical plans

T
1

?-User.name=“Bart" A User.uid = Member.uid A Member.gid = Group.gid

Group.name

7 N
X
7 N\ Group ?Groupname
User Member ™

Wember.gid = Group.gid
/ Group

X . .
User.uid= Member.uid
\serul ember. ui

Member
?name = “Bart”
User

Physical (execution) plan

* A complex query may involve multiple tables and
various query processing algorithms
* E.g., table scan, index nested-loop join, sort-merge join,
hash-based duplicate elimination...
A for a query tells the DBMS query
processor how to execute the query
* Atree of
* Each operator implements a query processing algorithm

* Each operator accepts a number of input tables/streams
and produces a single output table/stream

4/4/19



Examples of physical plans

SELECT Group.name

FROM User, Member, Group

WHERE User.name = 'Bart'

AND User.uid = Member.uid AND Member.gid = Group.gid;
PROJECT (Group.name)

INDEX-N ESTED—LO\OPAJOI N (gid)

PROJECT (Group.name)
MERGE-JOIN (gid)

N
SORT/(g,-ﬂCAN (Group)

MERGE-JOIN (uid)

Index on Group(gid)
INDEX-NESTED-LOOP-JOIN (uid)

Index on Member(uid) .
INDEX-SCAN (name = “Bart”) FILTER (namé = “Bart”) SORT (uid)

1 1 SCAN (Member)
Index on User(name) SCAN (User)

* Many physical plans for a single query
* Equivalent results, but different costs and assumptions!
DBMS query optimizer picks the “best” possible physical plan

hp:iwww.

e-stock-image-basement-pipelines-grey-image25917236

An iterator for table scan

* State: a block of memory for buffering input R;
a pointer to a tuple within the block

open(): allocate a block of memory
getNext()

.

« If no block of R has been read yet, read the first block
from the disk and return the first tuple in the block
* Ornullif R is empty

* If there is no more tuple left in the current block, read
the next block of R from the disk and return the first
tuple in the block

* Or nullif there are no more blocks in R

* Otherwise, return the next tuple in the memory block
* close(): deallocate the block of memory

Physical plan execution

* How are intermediate results passed from child
operators to parent operators?
* Temporary files
» Compute the tree bottom-up

« Children write intermediate results to temporary files
* Parents read temporary files
* Iterators

* Do not materialize intermediate results
« Children pipeline their results to parents

Iterator interface

* Every physical operator maintains its own
execution state and implements the following
methods:

* open(): Initialize state and get ready for processing

* getNext(): Return the next tuple in the result (or a null
pointer if there are no more tuples); adjust state to allow
subsequent tuples to be obtained

¢ close(): Clean up

An iterator for nested-loop join

R: An iterator for the left subtree
St An iterator for the right subtree

R S
* open()
R.open()
S.open()
= R.getNext()
* getNext()
while True:
s = S.getNext()
if's is null: # no more tuple from S

S.close() # reopen S
S'open

NESTED-LOOP-JOIN

(
ifsis null'I S'is empty!
r = R.getNext ove on to next
ifris %un;"xu‘ﬂ more tuple from R
return nul .
if joins(r, Is this tuple-based or
return concat(r, s)

.
* close() block-based nested-loop join?
R.close()
S close()

s):

4/4/19



An iterator for 2-pass merge sort

Allocate a number of memory blocks for sorting
Call open() on child iterator

If called for the first time
« Call getNext() on child to fill all blocks, sort the tuples, and output a
run

* Repeat until getNext() on child returns null
* Read one block from each run into memory, and initialize pointers
to point to the beginning tuple of each block
Return the smallest tuple and advance the corresponding
pointer; if a block is exhausted bring in the next block in the
same run

Call close() on child
Deallocate sorting memory and delete temporary runs

Blocking vs. non-blocking iterators

A iterator must call getNext() exhaustively
(or nearly exhaustively) on its children before
returning its first output tuple

* Examples: sort, aggregation

*A iterator expects to make only a few
getNext() calls on its children before returning its
first (or next) output tuple

* Examples: dup-preserving projection, filter, merge join
with sorted inputs

Execution of an iterator tree

e Call

* Call repeatedly until
it returns null

e Call

® Requests go down the tree
@ Intermediate result tuples go up the tree

% No intermediate files are needed

* But maybe useful if an iterator is opened many times

* Example: complex inner iterator tree in a nested-loop join;
“cache” its result in an intermediate file

Iterators are showing their age...

While iterators are an elegant way of pipelining
execution, their implementation tends to be
inefficient on modern architectures

* Too many (virtual) function calls

* Poor data locality—in memory instead of CPU
registers

* Fail to take advantage of
* Compiler loop unrolling
* CPU pipelining
* SIMD (single instruction, multiple data)

Which one do you think runs faster?

count =0
forrinR:
versus fors in S:
ifrA=s.A:
count += 1
retum count

Reclose()
S.close()

state = init()

Whole-stage “codegen”

* Given a physical plan, fuse operators together to
generate query-specific code, with loops instead of
iterator function calls

* Instead of “interpreting” the physical plan, give
generated code to an optimizing compiler

@ Functionality of a general-purpose execution
engine; performance as if system is hand-built to
run your specific query

* This approach has been adopted by newer systems,
such as Spark

4/4/19



