
4/4/19

1

Query Processing: 
A Systems View

Introduction to Databases
CompSci 316 Spring 2019

Announcements (Thu., Apr. 4)

• Monday 04/08: Hw4-problem 2 due
• Friday 04/12: HW4-problem 1 + this week’s problem 

due
• Remember to submit project update on piazza 

tomorrow (Friday)

2

A query’s trip through the DBMS
3

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =

Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

Parsing and validation

• Parser: SQL → parse tree
• Detect and reject syntax errors

• Validator: parse tree → logical plan
• Detect and reject semantic errors

• Nonexistent tables/views/columns?
• Insufficient access privileges?
• Type mismatches?

• Examples: AVG(name), name + pop, User UNION Member

• Also
• Expand *
• Expand view definitions

• Information required for semantic checking is found in 
system catalog (which contains all schema information)

4

Logical plan

• Nodes are logical operators (often relational 
algebra operators)
• There are many equivalent logical plans

5

𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧Member.gid = Group.gid
×

Member
Group×

User
An equivalent plan: 𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid= Member.uid

𝜎name = “Bart”

Physical (execution) plan

• A complex query may involve multiple tables and 
various query processing algorithms
• E.g., table scan, index nested-loop join, sort-merge join, 

hash-based duplicate elimination…

• A physical plan for a query tells the DBMS query 
processor how to execute the query
• A tree of physical plan operators
• Each operator implements a query processing algorithm
• Each operator accepts a number of input tables/streams 

and produces a single output table/stream

6



4/4/19

2

Examples of physical plans

• Many physical plans for a single query
• Equivalent results, but different costs and assumptions!
FDBMS query optimizer picks the “best” possible physical plan

7

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

PROJECT (Group.name)

MERGE-JOIN (gid)

SCAN (Group)SORT (gid)
MERGE-JOIN (uid)

SCAN (Member)
SORT (uid)

SCAN (User)

FILTER (name = “Bart”)

SELECT Group.name
FROM User, Member, Group
WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;

Physical plan execution

• How are intermediate results passed from child 
operators to parent operators?
• Temporary files

• Compute the tree bottom-up
• Children write intermediate results to temporary files
• Parents read temporary files

• Iterators
• Do not materialize intermediate results
• Children pipeline their results to parents

8

9

http://www.dreamstime.com/royalty-free-stock-image-basement-pipelines-grey-image25917236

Iterator interface

• Every physical operator maintains its own 
execution state and implements the following 
methods:
• open(): Initialize state and get ready for processing
• getNext(): Return the next tuple in the result (or a null 

pointer if there are no more tuples); adjust state to allow 
subsequent tuples to be obtained
• close(): Clean up

10

An iterator for table scan

• State: a block of memory for buffering input 𝑅; 
a pointer to a tuple within the block
• open(): allocate a block of memory
• getNext()
• If no block of 𝑅 has been read yet, read the first block 

from the disk and return the first tuple in the block
• Or null if 𝑅 is empty

• If there is no more tuple left in the current block, read 
the next block of 𝑅 from the disk and return the first 
tuple in the block
• Or null if there are no more blocks in 𝑅

• Otherwise, return the next tuple in the memory block

• close(): deallocate the block of memory

11

An iterator for nested-loop join
R: An iterator for the left subtree
S: An iterator for the right subtree
• open()

R.open()
S.open()
r = R.getNext()

• getNext()
while True:

s = S.getNext()
if s is null: # no more tuple from S 

S.close() # reopen S
S.open()
s = S.getNext()
if s is null: # S is empty!

return null
r = R.getNext() # move on to next r
if r is null: # no more tuple from R

return null
if joins(r, s):

return concat(r, s)

• close()
R.close()
S.close()

12

NESTED-LOOP-JOIN

R S

Is this tuple-based or 
block-based nested-loop join?



4/4/19

3

An iterator for 2-pass merge sort

• open()
• Allocate a number of memory blocks for sorting
• Call open() on child iterator

• getNext()
• If called for the first time

• Call getNext() on child to fill all blocks, sort the tuples, and output a 
run

• Repeat until getNext() on child returns null
• Read one block from each run into memory, and initialize pointers 

to point to the beginning tuple of each block
• Return the smallest tuple and advance the corresponding 

pointer; if a block is exhausted bring in the next block in the 
same run

• close()
• Call close() on child
• Deallocate sorting memory and delete temporary runs

13

Blocking vs. non-blocking iterators

• A blocking iterator must call getNext() exhaustively 
(or nearly exhaustively) on its children before 
returning its first output tuple
• Examples: sort, aggregation

• A non-blocking iterator expects to make only a few 
getNext() calls on its children before returning its 
first (or next) output tuple
• Examples: dup-preserving projection, filter, merge join 

with sorted inputs

14

Execution of an iterator tree

• Call root.open()
• Call root.getNext() repeatedly until 

it returns null
• Call root.close()

FRequests go down the tree
FIntermediate result tuples go up the tree
FNo intermediate files are needed
• But maybe useful if an iterator is opened many times

• Example: complex inner iterator tree in a nested-loop join; 
“cache” its result in an intermediate file

15

Iterators are showing their age…

While iterators are an elegant way of pipelining 
execution, their implementation tends to be 
inefficient on modern architectures
• Too many (virtual) function calls
• Poor data locality—in memory instead of CPU 

registers
• Fail to take advantage of
• Compiler loop unrolling
• CPU pipelining
• SIMD (single instruction, multiple data)

16

Which one do you think runs faster?
17

open()
R.open()
S.open()
r = R.getNext()

getNext()
while True:
s = S.getNext()
if s is null: # no more tuple from S 
S.close() # reopen S
S.open()
s = S.getNext()
if s is null: # S is empty!
return null

r = R.getNext() # move on to next r
if r is null: # no more tuple from R
return null

if joins(r, s):
return concat(r, s)

close()
R.close()
S.close()

count = 0
for r in R:

for s in S:
if r.A = s.A:

count += 1
return count

class NLJ

open()
R.open()
state = init()

getNext()
while True:
r = R.getNext()
if r is null: # no more tuple from R 
return finalize(state)

state = accumulate(state, r)
close()

R.close()

class Aggr

versus

Whole-stage “codegen”

• Given a physical plan, fuse operators together to 
generate query-specific code, with loops instead of 
iterator function calls
• Instead of “interpreting” the physical plan, give 

generated code to an optimizing compiler

☞Functionality of a general-purpose execution 
engine; performance as if system is hand-built to 
run your specific query
• This approach has been adopted by newer systems, 

such as Spark

18


