
Query Optimization
Introduction to Databases

CompSci 316 Spring 2019

Announcements (Thu., Apr. 9)

• Friday 04/12: HW4-problem 1 due (gradiance)

• Monday 04/15: Hw4-problem 3 due (gradescope)

2

Query optimization

• One logical plan → “best” physical plan

• Questions
• How to enumerate possible plans

• How to estimate costs

• How to pick the “best” one

• Often the goal is not getting the optimum plan, but
instead avoiding the horrible ones

3

1 second 1 hour1 minute

Any of these will do

Plan enumeration in relational algebra

• Apply relational algebra equivalences

Join reordering: × and ⋈ are associative and
commutative (except column ordering, but that is
unimportant)

4

⋈

⋈

𝑅 𝑆

𝑇

⋈

⋈

𝑆 𝑅

𝑇

⋈

⋈

𝑅 𝑇

𝑆

…= = =

More relational algebra equivalences

• Convert 𝜎𝑝-× to/from ⋈𝑝: 𝜎𝑝 𝑅 × 𝑆 = 𝑅 ⋈𝑝 𝑆

• Merge/split 𝜎’s: 𝜎𝑝1 𝜎𝑝2𝑅 = 𝜎𝑝1∧𝑝2𝑅

• Merge/split 𝜋’s: 𝜋𝐿1 𝜋𝐿2𝑅 = 𝜋𝐿1𝑅, where 𝐿1 ⊆ 𝐿2
• Push down/pull up 𝜎:
𝜎𝑝∧𝑝𝑟∧𝑝𝑠 𝑅 ⋈𝑝′ 𝑆 = 𝜎𝑝𝑟𝑅 ⋈𝑝∧𝑝′ 𝜎𝑝𝑠𝑆 , where

• 𝑝𝑟 is a predicate involving only 𝑅 columns
• 𝑝𝑠 is a predicate involving only 𝑆 columns
• 𝑝 and 𝑝′ are predicates involving both 𝑅 and 𝑆 columns

• Push down 𝜋: 𝜋𝐿 𝜎𝑝𝑅 = 𝜋𝐿 𝜎𝑝 𝜋𝐿𝐿′𝑅 , where
• 𝐿′ is the set of columns referenced by 𝑝 that are not in 𝐿

• Many more (seemingly trivial) equivalences…
• Can be systematically used to transform a plan to new ones

5

Relational query rewrite example
6

𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member

Group×

User 𝜋Group.name
𝜎Member.gid = Group.gid
×

Member

Group

×

User

𝜎User.uid = Member.uid

𝜎name = “Bart”

Push down 𝜎

𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid = Member.uid

𝜎name = “Bart”

Convert 𝜎𝑝-× to ⋈𝑝

Heuristics-based query optimization

• Start with a logical plan

• Push selections/projections down as much as
possible

• Why? Reduce the size of intermediate results

• Why not? May be expensive; maybe joins filter better

• Join smaller relations first, and avoid cross product
• Why? Reduce the size of intermediate results

• Why not? Size depends on join selectivity too

• Convert the transformed logical plan to a physical
plan (by choosing appropriate physical operators)

7

SQL query rewrite

• More complicated—subqueries and views divide a
query into nested “blocks”

• Processing each block separately forces particular join
methods and join order

• Even if the plan is optimal for each block, it may not be
optimal for the entire query

• Unnest query: convert subqueries/views to joins

We can just deal with select-project-join queries
• Where the clean rules of relational algebra apply

8

SQL query rewrite example

• SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

9

SQL query rewrite example

• SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

• SELECT name
FROM User, Member
WHERE User.uid = Member.uid;

10

SQL query rewrite example

• SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

• SELECT name
FROM User, Member
WHERE User.uid = Member.uid;

• Wrong—consider two Bart’s, each joining two groups

11

SQL query rewrite example

• SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

• SELECT name
FROM User, Member
WHERE User.uid = Member.uid;

• Wrong—consider two Bart’s, each joining two groups

• SELECT name
FROM (SELECT DISTINCT User.uid, name

FROM User, Member
WHERE User.uid = Member.uid);

• Right—assuming User.uid is a key

12

Dealing with correlated subqueries

• SELECT gid FROM Group
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);

13

Dealing with correlated subqueries

• SELECT gid FROM Group
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);

• SELECT gid
FROM Group, (SELECT gid, COUNT(*) AS cnt

FROM Member GROUP BY gid) t
WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield%';

14

Dealing with correlated subqueries

• SELECT gid FROM Group
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);

• SELECT gid
FROM Group, (SELECT gid, COUNT(*) AS cnt

FROM Member GROUP BY gid) t
WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield%';

• New subquery is inefficient (it computes the size for
every group)

• Suppose a group is empty?

15

“Magic” decorrelation
• SELECT gid FROM Group

WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);

• WITH Supp_Group AS
(SELECT * FROM Group WHERE name LIKE 'Springfield%'),

Magic AS
(SELECT DISTINCT gid FROM Supp_Group),

DS AS
((SELECT Group.gid, COUNT(*) AS cnt

FROM Magic, Member WHERE Magic.gid = Member.gid
GROUP BY Member.gid) UNION

(SELECT gid, 0 AS cnt
FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp_Group.gid FROM Supp_Group, DS
WHERE Supp_Group.gid = DS.gid
AND min_size > DS.cnt;

16

Process the outer query without the subquery

Collect bindings

Evaluate the subquery with bindings

Finally, refine
the outer query

Heuristics- vs. cost-based optimization

• Heuristics-based optimization
• Apply heuristics to rewrite plans into cheaper ones

• Cost-based optimization
• Rewrite logical plan to combine “blocks” as much as

possible

• Optimize query block by block
• Enumerate logical plans (already covered)

• Estimate the cost of plans

• Pick a plan with acceptable cost

• Focus: select-project-join blocks

17

Cost estimation

• We have: cost estimation for each operator
• Example: SORT(gid) takes 𝑂 𝐵 input × log𝑀 𝐵 input

• But what is 𝐵 input ?

• We need: size of intermediate results

18

PROJECT (Group.title)

MERGE-JOIN (gid)

SCAN (Group)SORT (gid)

MERGE-JOIN (uid)

SCAN (Member)

SORT (uid)

SCAN (User)

FILTER (name = “Bart”)

Physical plan example:

Input to SORT(gid):

19

http://www.learningresources.com/product/estimation+station.do

Cardinality estimation

Selections with equality predicates

• 𝑄: 𝜎𝐴=𝑣𝑅

• Suppose the following information is available
• Size of 𝑅: 𝑅

• Number of distinct 𝐴 values in 𝑅: 𝜋𝐴𝑅

• Assumptions
• Values of 𝐴 are uniformly distributed in 𝑅

• Values of 𝑣 in 𝑄 are uniformly distributed over all
𝑅. 𝐴 values

• 𝑄 ≈ ൗ𝑅 𝜋𝐴𝑅

• Selectivity factor of 𝐴 = 𝑣 is ൗ1 𝜋𝐴𝑅

20

Conjunctive predicates

• 𝑄: 𝜎𝐴=𝑢 ∧ 𝐵=𝑣𝑅

• Additional assumptions
• 𝐴 = 𝑢 and 𝐵 = 𝑣 are independent

• Counterexample: major and advisor

• No “over”-selection
• Counterexample: 𝐴 is the key

• 𝑄 ≈ ൗ𝑅 𝜋𝐴𝑅 ⋅ 𝜋𝐵𝑅

• Reduce total size by all selectivity factors

21

22

Negated and disjunctive predicates

• 𝑄: 𝜎𝐴≠𝑣𝑅

• 𝑄 ≈ 𝑅 ⋅ 1 − ൗ1 𝜋𝐴𝑅

• Selectivity factor of ¬𝑝 is (1 − selectivity factor of 𝑝)

• 𝑄: 𝜎𝐴=𝑢 ∨ 𝐵=𝑣𝑅

• 𝑄 ≈ 𝑅 ⋅ ൗ1 𝜋𝐴𝑅
+ ൗ1 𝜋𝐵𝑅

?

• No! Tuples satisfying 𝐴 = 𝑢 and 𝐵 = 𝑣 are counted twice

• 𝑄 ≈ 𝑅 ⋅ ൗ1 𝜋𝐴𝑅
+ ൗ1 𝜋𝐵𝑅

− ൗ1 𝜋𝐴𝑅 𝜋𝐵𝑅

• Inclusion-exclusion principle

23

Range predicates

• 𝑄: 𝜎𝐴>𝑣𝑅

• Not enough information!
• Just pick, say, 𝑄 ≈ 𝑅 ⋅ Τ1 3

• With more information
• Largest R.A value: high 𝑅. 𝐴

• Smallest R.A value: low 𝑅. 𝐴

• 𝑄 ≈ 𝑅 ⋅
high 𝑅.𝐴 −𝑣

high 𝑅.𝐴 −low 𝑅.𝐴

• In practice: sometimes the second highest and lowest
are used instead

• The highest and the lowest are often used by inexperienced
database designer to represent invalid values!

24

Two-way equi-join

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶

• Assumption: containment of value sets
• Every tuple in the “smaller” relation (one with fewer

distinct values for the join attribute) joins with some
tuple in the other relation

• That is, if 𝜋𝐴𝑅 ≤ 𝜋𝐴𝑆 then 𝜋𝐴𝑅 ⊆ 𝜋𝐴𝑆

• Certainly not true in general

• But holds in the common case of foreign key joins

• 𝑄 ≈
𝑅 ⋅ 𝑆

max 𝜋𝐴𝑅 , 𝜋𝐴𝑆

• Selectivity factor of 𝑅. 𝐴 = 𝑆. 𝐴 is ൗ1 max 𝜋𝐴𝑅 , 𝜋𝐴𝑆

25

26

Multiway equi-join

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶,𝐷

• What is the number of distinct 𝐶 values in the join
of 𝑅 and 𝑆?

• Assumption: preservation of value sets
• A non-join attribute does not lose values from its set of

possible values

• That is, if 𝐴 is in 𝑅 but not 𝑆, then 𝜋𝐴 𝑅 ⋈ 𝑆 = 𝜋𝐴𝑅

• Certainly not true in general

• But holds in the common case of foreign key joins (for
value sets from the referencing table)

27

Multiway equi-join (cont’d)

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶,𝐷

• Start with the product of relation sizes
• 𝑅 ⋅ 𝑆 ⋅ 𝑇

• Reduce the total size by the selectivity factor of
each join predicate

• 𝑅. 𝐵 = 𝑆. 𝐵: ൗ1 max 𝜋𝐵𝑅 , 𝜋𝐵𝑆

• 𝑆. 𝐶 = 𝑇. 𝐶: ൗ1 max 𝜋𝐶𝑆 , 𝜋𝐶𝑇

• 𝑄 ≈
𝑅 ⋅ 𝑆 ⋅|𝑇|

max 𝜋𝐵𝑅 , 𝜋𝐵𝑆 ⋅max 𝜋𝐶𝑆 , 𝜋𝐶𝑇

28

Cost estimation: summary

• Using similar ideas, we can estimate the size of
projection, duplicate elimination, union, difference,
aggregation (with grouping)

• Lots of assumptions and very rough estimation
• Accurate estimate is not needed

• Maybe okay if we overestimate or underestimate
consistently

• May lead to very nasty optimizer “hints”
SELECT * FROM User WHERE pop > 0.9;

SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;

• Not covered: better estimation using histograms

29

Search strategy
30

http://1.bp.blogspot.com/-Motdu8reRKs/TgyAi4ki5QI/AAAAAAAAAKE/mi8ejfZ8S7U/s1600/cornMaze.jpg

Search space

• Huge!

• “Bushy” plan example:

• Just considering different join orders, there are
2𝑛−2 !

𝑛−1 !
bushy plans for 𝑅1 ⋈ ⋯ ⋈ 𝑅𝑛

• 30240 for 𝑛 = 6

• And there are more if we consider:
• Multiway joins

• Different join methods

• Placement of selection and projection operators

31

⋈

𝑅2 𝑅1 𝑅3

𝑅4 𝑅5

⋈ ⋈

⋈

32

Left-deep plans

• Heuristic: consider only “left-deep” plans, in which
only the left child can be a join

• Tend to be better than plans of other shapes, because many
join algorithms scan inner (right) relation multiple times—
you will not want it to be a complex subtree

• How many left-deep plans are there for 𝑅1 ⋈ ⋯ ⋈ 𝑅𝑛?
• Significantly fewer, but still lots— 𝑛! (720 for 𝑛 = 6)

33

⋈

𝑅2 𝑅1

𝑅3

𝑅4

𝑅5⋈
⋈

⋈

A greedy algorithm

• 𝑆1, … , 𝑆𝑛
• Say selections have been pushed down; i.e., 𝑆𝑖 = 𝜎𝑝 𝑅𝑖

• Start with the pair 𝑆𝑖 , 𝑆𝑗 with the smallest estimated
size for 𝑆𝑖 ⋈ 𝑆𝑗

• Repeat until no relation is left:
Pick 𝑆𝑘 from the remaining relations such that the join
of 𝑆𝑘 and the current result yields an intermediate
result of the smallest size

34

Current subplan

… , 𝑆𝑘 , 𝑆𝑙 , 𝑆𝑚, …
Remaining

relations
to be joined

Pick most efficient join method

⋈

𝑆𝑘

Minimize expected size

Selinger’s algorithm: A dynamic
programming approach

Optimal for “whole” made up from

optimal for “parts”

35

Principle of Optimality

Query: R1 R2 R3 R4 R5

R3 R2

R4

R1

R5

Suppose,

this is an Optimal Plan

for joining R1…R5:

36

Principle of Optimality

Query: R1 R2 R3 R4 R5

R3 R2

R4

R1

R5

Then, what can you say

about this sub-plan?

This has to be the

optimal plan for joining R3, R2, R4, R1

Suppose,

this is an Optimal Plan

for joining R1…R5:

37

Principle of Optimality

Query: R1 R2 R3 R4 R5

R3 R2

R4

R1

R5

Suppose,

this is an Optimal Plan

for joining R1…R5:
This has to be the

optimal plan for joining R3, R2, R4

Then, what can you say

about this sub-plan?

38

We are using the
associativity and
commutativity of joins
(R ⨝ S) ⨝ T = R ⨝ (S ⨝ T)
R ⨝ S = S ⨝ R

Exploiting Principle of
Optimality

Query: R1 R2 … Rn

R3 R1

R2

R2 R3

R1

Optimal

for joining R1, R2, R3

Sub-Optimal

for joining R1, R2, R3

Both are giving the same result
R2 ⨝ R3 ⨝ R1 = R3 ⨝ R1 ⨝ R2

39

OPT ({ R1, R2, R3 }):

OPT ({ R2, R3 }) + cost-to-join ({R2, R3 }, {R1})

OPT ({ R1, R2 }) + cost-to-join ({R1, R2 }, {R3})

OPT ({ R1, R3 }) + cost-to-join ({R1, R3 }, {R2})

Min

Selinger Algorithm:

40

Query: R1 R2 R3 R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:

41

Query: R1 R2 R3 R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:

42

Query: R1 R2 R3 R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:

e.g. All possible permutations of R1, R3, R4
have been considered

after OPT({R1, R3, R4}) has been computed

43

Query: R1 R2 R3 R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:

44

Q. How to optimally compute join of {R1, R2, R3, R4}?

Ans: First optimally join {R1, R3, R4} then join with R2 as inner.

Query: R1 R2 R3 R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:

45

Q. How to optimally compute join of {R1, R3, R4}?

Ans: First optimally join {R1, R3}, then join with R4 as inner.

Query: R1 R2 R3 R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:

46

Q. How to optimally compute join of {R1, R3}?

Ans: First optimally join {R3}, then join with R1 as inner.

Query: R1 R2 R3 R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:

47

Q. How to optimally compute join of {R3}?

Ans: Single relation – so optimally scan R3.

R2

R3

R4

R1

Selinger Algorithm:

Final optimal plan:

Query: R1 R2 R3 R4

NOTE : There is a one-one correspondence between the permutation (R3, R1, R4, R2)
and the above left deep plan

48

The need for “interesting order”

• Optimal plan may not have an optimal sub-plan in
practice!

• Example: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶 ⋈ 𝑇 𝐴,𝐷

• Best plan for 𝑅 ⋈ 𝑆: hash join (beats sort-merge join)

• Best overall plan: sort-merge join 𝑅 and 𝑆, and then
sort-merge join with 𝑇

• Subplan of the optimal plan is not optimal!

• Why?
• The result of the sort-merge join of 𝑅 and 𝑆 is sorted on 𝐴

• This is an interesting order that can be exploited by later
processing (e.g., join, dup elimination, GROUP BY, ORDER
BY, etc.)!

49

Dealing with interesting orders

When picking the best plan

• Comparing their costs is not enough
• Plans are not totally ordered by cost anymore

• Comparing interesting orders is also needed
• Plans are now partially ordered

• Plan 𝑋 is better than plan 𝑌 if
• Cost of 𝑋 is lower than 𝑌, and

• Interesting orders produced by 𝑋 “subsume” those produced by 𝑌

• Need to keep a set of optimal plans for joining every
combination of 𝑘 tables

• At most one for each interesting order

50

Summary

• Relational algebra equivalence

• SQL rewrite tricks

• Heuristics-based optimization

• Cost-based optimization
• Need statistics to estimate sizes of intermediate results

• Greedy approach

• Dynamic programming approach

51

Practice problem:
Estimating the cost of the entire plan

52

53

Student SCheckout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

Physical Query Plan
Q. Compute
1. the cost and cardinality in

steps (a) to (g)

2. the total cost

Assumptions (given):
• Unclustered B+tree

index on B.author

• Clustered B+tree index

on C.bid

• All index pages are in

memory

• Unlimited memory

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author)

C(sid,bid,date)

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop,

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

V(B,author) = 500

7 <= age <= 24

(File scan)

no. of tuples no. of pages

54

Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop,

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost =

T(B) / V(B, author)

= 50,000/500

= 100 (unclustered)

Cardinality =

100

(a)

(File scan)

55

Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop,

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost =

0 (on the fly)

Cardinality =

100

(b)

(File scan)

56

Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop,

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

• one index lookup per outer B

tuple

• 1 book has T(C)/ T(B) = 6

checkouts (uniformity)

• # C tuples per page =

T(C)/B(C) = 20

• 6 tuples fit in at most 2

consecutive pages (clustered)

could assume 1 page as well

Cost <=

100 * 2= 200

Cardinality =

100 * 6 = 600

= 100 * T(C)/ MAX(100, V(C, bid))

assuming

V(C, bid) = V(B, bid) = T(B) =

50,000

(c)

(File scan)

57

Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop,

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost =

0 (on the fly)

Cardinality =

600

(d)

(File scan)

58

Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop,

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Outer relation is already in

(unlimited) memory

need to scan S relation

Cost =

B(S) = 1000

Cardinality =

600

(one student per checkout)

(e)

(File scan)

59

Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop,

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost =

0 (on the fly)

Cardinality =

600 * 7/18 = 234 (approx)

(f)

(File scan)

60

Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop,

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost =

0 (on the fly)

Cardinality =

234

(g)

(File scan)

61

Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

(File scan)

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop,

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid (On the fly)

(On the fly)

Total cost =

1300

Final cardinality =

234 (approx)

(total)(On the fly)

(On the fly)

