Query Optimization
 Introduction to Databases

CompSci 316 Spring 2019

DUKE

Announcements (Thu., Apr. 9)

- Friday 04/12: HW4-problem 1 due (gradiance)
- Monday 04/15: Hw4-problem 3 due (gradescope)

Query optimization

- One logical plan \rightarrow "best" physical plan
- Questions
- How to enumerate possible plans
- How to estimate costs
- How to pick the "best" one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Plan enumeration in relational algebra

- Apply relational algebra equivalences

Join reordering: \times and \bowtie are associative and commutative (except column ordering, but that is unimportant)

More relational algebra equivalences

- Convert $\sigma_{p}-\times$ to/from $\bowtie_{p}: \sigma_{p}(R \times S)=R \bowtie_{p} S$
- Merge/split σ 's: $\sigma_{p_{1}}\left(\sigma_{p_{2}} R\right)=\sigma_{p_{1} \wedge p_{2}} R$
- Merge/split π 's: $\pi_{L_{1}}\left(\pi_{L_{2}} R\right)=\pi_{L_{1}} R$, where $L_{1} \subseteq L_{2}$
- Push down/pull up σ :
$\sigma_{p \wedge p_{r} \wedge p_{s}}\left(R \bowtie_{p^{\prime}} S\right)=\left(\sigma_{p_{r}} R\right) \bowtie_{p \wedge p^{\prime}}\left(\sigma_{p_{s}} S\right)$, where
- p_{r} is a predicate involving only R columns
- p_{s} is a predicate involving only S columns
- p and p^{\prime} are predicates involving both R and S columns
- Push down π : $\pi_{L}\left(\sigma_{p} R\right)=\pi_{L}\left(\sigma_{p}\left(\pi_{L L^{\prime}} R\right)\right)$, where
- L^{\prime} is the set of columns referenced by p that are not in L
- Many more (seemingly trivial) equivalences...
- Can be systematically used to transform a plan to new ones

Relational query rewrite example

Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
- Why? Reduce the size of intermediate results
- Why not? May be expensive; maybe joins filter better
- Join smaller relations first, and avoid cross product
- Why? Reduce the size of intermediate results
- Why not? Size depends on join selectivity too
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested "blocks"
- Processing each block separately forces particular join methods and join order
- Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins

We can just deal with select-project-join queries

- Where the clean rules of relational algebra apply

Q \rightarrow many $\log \mathrm{g}^{\prime} a^{\prime}$

SQL query rewrite example

- SELECT name FROM User
WHERE uid = ANY (SELECT uid FROM Member);

SQL query rewrite example

- SELECT name FROM User
WHERE uid = ANY (SELECT uid FROM Member);
- SELECT name

FROM User, Member
WHERE User.uid = Member.uid;

SQL query rewrite example

- SELECT name

FROM User
WHERE uid = ANY (SELECT uid FROM Member);

- SELECT name

FROM User, Member
WHERE User.uid = Member.uid;

- Wrong-consider two Bart's, each joining two groups

SQL query rewrite example

- SELECT name FROM User WHERE uid = ANY (SELECT uid FROM Member);
- SELECT name

FROM User, Member
WHERE User.uid = Member.uid;

- Wrong-consider two Bart's, each joining two groups
- SELECT name

FROM (SELECT DISTINCT User.uid, name
FROM User, Member
WHERE User.uid = Member.uid);

- Right—assuming User.uid is a key

Dealing with correlated subqueries

- SELECT gid FROM Group

WHERE name LIKE 'Springfield\%'
AND min_size > (SELECT COUNT(*) FROM Member
WHERE Member.gid = Group.gid);

Dealing with correlated subqueries

- SELECT gid FROM Group WHERE name LIKE 'Springfield\%'
AND min_size > (SELECT COUNT(*) FROM Member
WHERE Member.gid = Group.gid);
- SELECT gid

FROM Group, (SELECT gid, COUNT(*) AS cnt
FROM Member GROUP BY gid) t
WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield\%';

Dealing with correlated subqueries

- SELECT gid FROM Group WHERE name LIKE 'Springfield\%' AND min_size > (SELECT COUNT(*) FROM Member WHERE Member.gid = Group.gid);
- SELECT gid

FROM Group, (SELECT gid, COUNT(*) AS cnt FROM Member GROUP BY gid) t
WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield\%';

- New subquery is inefficient (it computes the size for every group)
- Suppose a group is empty?

"Magic" decorrelation

- SELECT gid FROM Group WHERE name LIKE 'Springfield\%'
AND min_size > (SELECT COUNT(*) FROM Member
WHERE Member.gid = Group.gid);
- WITH Supp_Group AS Process the outer query without the subquery (SELECT * FROM Group WHERE name LIKE 'Springfield\%'),
Magic AS
Collect bindings
(SELECT DISTINCT gid FROM Supp_Group),
DSAS Evaluate the subquery with bindings
((SELECT Group.gid, COUNT(*) AS cnt
FROM Magic, Member WHERE Magic.gid = Member.gid GROUP BY Member.gid) UNION
(SELECT gid, 0 AS cnt
FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))
SELECT Supp_Group.gid FROM Supp_Group, DS
Finally, refine
WHERE Supp_Group.gid = DS.gid
the outer query
AND min_size > DS.cnt;

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
- Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
- Rewrite logical plan to combine "blocks" as much as possible
- Optimize query block by block
- Enumerate logical plans (already covered)
- Estimate the cost of plans
- Pick a plan with acceptable cost
- Focus: select-project-join blocks

Cost estimation

Physical plan example:

PROJECT (Group.title)
MERGE-JOIN (gid)

Input to SORT(gid):

- We have: cost estimation for each operator
- Example: SORT(gid) takes O (B (input) $\times \log _{M} B$ (input))
- But what is B (input)?
- We need: size of intermediate results

Cardinality estimation

Selections with equality predicates

- $Q: \sigma_{A=v} R$

$$
\sigma_{A}=2 R \left\lvert\,=\frac{9}{4}=2.2^{5}\right.
$$

$$
Z_{A=2} R=\frac{9}{4}=
$$

- Suppose the following information is available
- Size of $R:|R|$
- Number of distinct A values in $R:\left|\pi_{A} R\right|$
- Assumptions
- Values of A are uniformly distributed in R
- Values of v in Q are uniformly distributed over all $R . A$ values
- $|Q| \approx|R| /\left|\pi_{A} R\right|$
- Selectivity factor of $(A=v)$ is $1 /\left|\pi_{A} R\right|$

$$
|R|=9 \quad\left|\pi_{n} R\right|=4
$$

Negated and disjunctive predicates

- $Q: \sigma_{A \neq v} R$
- $|Q| \approx|R| \cdot\left(1-1 /\left|\pi_{A} R\right|\right)$

- Selectivity factor of $\neg p$ is (1 - selectivity factor of p)
- $Q: \sigma_{A=u \vee B=v} R$
- $|Q| \approx|R| \cdot\left(1 /\left|\pi_{A} R\right|+1 /\left|\pi_{B} R\right|\right)$?
- No! Tuples satisfying $(A=u)$ and $(B=v)$ are counted twice
- $|Q| \approx|R| \cdot\left(1 /\left|\pi_{A} R\right|+1 /\left|\pi_{B} R\right|-1 /\left|\pi_{A} R\right|\left|\pi_{B} R\right|\right)$
- Inclusion-exclusion principle

Range predicates

- $Q: \sigma_{A>{ }_{v}} R$
- Not enough information!
- Just pick, say, $|Q| \approx|R| \cdot 1 / 3$
- With more information
- Largest R.A value: high (R.A)
- Smallest R.A value: low (R.A)
- $|Q| \approx|R| \cdot \frac{\operatorname{high}(R . A)-v}{\operatorname{high}(R . A)-\operatorname{low}(R . A)}$
- In practice: sometimes the second highest and lowest are used instead
- The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

- $Q: R(A, B) \bowtie S(A, C)$

- Assumption: containment of value sets
- Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
- That is, if $\left|\pi_{A} R\right| \leq\left|\pi_{A} S\right|$ then $\pi_{A} R \subseteq \pi_{A} S$
- Certainly not true in general
- But holds in the common case of foreign key joins R

Multiway equi-join

- $Q: R(A, B) \bowtie S(B, \overline{C) \bowtie T(C, D)}$
- What is the number of distinct C values in the join of R and S ?
- Assumption: preservation of value sets
- A non-join attribute does not lose values from its set of possible values
- That is, if A is in R but not S, then $\pi_{A}(R \bowtie S)=\pi_{A} R$
- Certainly not true in general
- But holds in the common case of foreign key joins (for value sets from the referencing table)

Multiway equi-join (cont'd)

- $Q: R(A, B) \bowtie S(B, \bar{C}) \bowtie T(\bar{C}, D)$
- Start with the product of relation sizes
- $|R| \cdot|S| \cdot|T|$
- Reduce the total size by the selectivity factor of each join predicate
-RIB $=$ S. B: ${ }^{1} / \max \left(\left|\pi_{B} R\right|,\left|\pi_{B} S\right|\right)$
- SC $=$ T. $C: 1 / \max \left(\left|\pi_{c} S\right|\left|\|_{c} \cdot T\right|\right)$
- $|Q| \approx \frac{|R| \cdot|S| \cdot|T|}{\max \left(\left|\pi_{B} R\right|,\left|\pi_{B} S\right|\right) \cdot \max \left(\left|\pi_{C} S\right|,\left|\pi_{C} T\right|\right)}$

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
- Accurate estimate is not needed
- Maybe okay if we overestimate or underestimate consistently
- May lead to very nasty optimizer "hints"

```
SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;
```

- Not covered: better estimation using histograms

Search strategy

Search space

- Huge!
- "Bushy" plan example:

- Just considering different join orders, there are $\frac{(2 n-2)!}{(n-1)!}$ bushy plans for $R_{1} \bowtie \cdots \bowtie R_{n}$
- 30240 for $n=6$
- And there are more if we consider:
- Multiway joins
- Different join methods
- Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only "left-deep" plans, in which only the left child can be a join
- Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple timesyou will not want it to be a complex subtree
- How many left-deep plans are there for $R_{1} \bowtie \cdots \bowtie R_{n}$?
- Significantly fewer, but still lots- $n!(720$ for $n=6)$

A greedy algorithm

- S_{1}, \ldots, S_{n}

- Say selections have been pushed down; ie., $S_{i}=\sigma_{p}\left(R_{i}\right)$
- Start with the pair S_{i}, S_{j} with the smallest estimated size for $S_{i} \bowtie S_{j}$
- Repeat until no relation is left:

Pick S_{k} from the remaining relations such that the join of S_{k} and the current result yields an intermediate result of the smallest size

Pick most efficient join method

Selinger'salgorithm: A dynamic programming approach

Optimal for "whole" made up from optimal for "parts"

Principle of Optimality

Query: R1 $\bowtie R 2 \bowtie R 3 \bowtie R 4 \bowtie R 5$

Principle of Optimality

Query: R1 $\bowtie R 2 \bowtie R 3 \bowtie R 4 \bowtie R 5$

Then, what can you say about this sub-plan?

Suppose,
this is an Optimal Plan for joining R1...R5:
This has to be thee optimal plan for joining R3, R2, R4, R1

Principle of Optimality

Query: R1 $\bowtie R 2 \bowtie R 3 \bowtie R 4 \bowtie R 5$

Then, what can you say about this sub-plan?

This has to be the for joining R1...R5:
optimal plan for joining R3, R2, R4

Exploiting Principle of Optimality

Query: R1 \bowtie R2 \bowtie

Both are giving the same result $R 2 \bowtie R 3 \bowtie R 1=R 3 \bowtie R 1 \bowtie R 2$

Optimal for joining R1, R2, R3

Sub-Optimal for joining R1, R2, R3

Selinger Algorithm:

OPT ($\{$ R1, R2, R3\}):

OPT (\{ R1, R2 \}) $\ddagger+$ cost-to-join (\{R1, R2 \}, \{R3\})

OPT (\{ R2, R3 \}) + cost-to-join (\{R2, R3 \}, \{R1\}) \longrightarrow \downarrow
OPT ($\{$ R1, R3 \} $)$ + cost-to-join (\{R1, R3 \}, \{R2\})

Selinger Algorithm:

Query: R1 \bowtie R2 $\bowtie R 3 \bowtie \Delta 4$

Selinger Algorithm:

Query: R1 $\bowtie R 2 \bowtie R 3 \bowtie R 4$

Selinger Algorithm:

Query: R1 \bowtie R2 \triangleleft R3 \bowtie R4
e.g. All possible permutations of R1, R3, R4 have been considered
after OPT(\{R1, R3, R4\}) has been computed

Selinger Algorithm:

Query: R1 \bowtie R2 $\bowtie R 3 \bowtie R 4$

Q. How to optimally compute join of $\left\{R_{1}, R 2, R 3, R 4\right\}$?

Ans: First optimally join $\{R 1, R 3, R 4\}$ then join with $R 2$ as inner. \{ R1, R2, R3, R4 \}

Progress

 ofalgorithm

Selinger Algorithm:

Query: R1 \bowtie R2 $\bowtie R 3 \bowtie R 4$

Q. How to optimally compute join of $\{R 1, R 3, R 4\}$?

Ans: First optimally join $\{R 1, R 3\}$, then join with $R 4$ as inner. \{ R1, RR, RB, RA \} ~

Progress of
algorithm
$\{R 1, R 2, R 3\} \quad\{R 1, R 2, R 4\} \quad\{R 1, R 3, R 4\}\{R 2, R 3, R 4\}$

$\{R 1, R 2\}\{R 1, R 3\}\{R 1, R 4\} \quad\{R 2, R 3\} \quad\{R 2, R 4\}\{R 3, R 4\}$

Selinger Algorithm:

Query: R1 \bowtie R2 $\bowtie R 3 \bowtie R 4$

Q. How to optimally compute join of $\{R 1, R 3\}$?

Ans: First optimally join $\left\{R_{3}\right\}$, then join with $R 1$ as inner. \{ RT, RR, RB, RU \} ~
Progress of algorithm

$\{R 1, R 2, R 3\} \quad\{R 1, R 2, R 4\} \quad\{R 1, R 3, R 4\}\{R 2, R 3, R 4\}$

$\{R 1, R 2\}\{R 1, R 3\}\{R 1, R 4\} \quad\{R 2, R 3\} \quad\{R 2, R 4\} \quad\{R 3, R 4\}$

Selinger Algorithm:

Query: R1 \bowtie R2 $\bowtie R 3 \bowtie R 4$

Q. How to optimally compute join of $\{R 3\}$?

Progress of

Ans: Single relation - so optimally scan R3.
p algorithm
$\{R 1, R 2, R 3\}\{R 1, R 2, R 4\}\{R 1, R 3, R 4\}\{R 2, R 3, R 4\}$

Selinger Algorithm:

Query: R1 $\propto 2 \bowtie R 3 \bowtie R 4$

Final optimal plan:

NOTE : There is a one-one correspondence between the permutation (R3, R1, R4, R2) and the above left deep plan

The need for "interesting order"

- Optimal plan may not have an optimal sub-plan in practice!
- Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
- Best plan for $R \bowtie S$: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
- Subplan of the optimal plan is not optimal!
- Why?
- The result of the sort-merge join of R and S is sorted on A
- This is an interesting order that can be exploited by later processing (e.g., join, dup elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

When picking the best plan

- Comparing their costs is not enough
- Plans are not totally ordered by cost anymore
- Comparing interesting orders is also needed
- Plans are now partially ordered
- Plan X is better than plan Y if
- Cost of X is lower than Y, and
- Interesting orders produced by X "subsume" those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
- At most one for each interesting order

Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
- Need statistics to estimate sizes of intermediate results
- Greedy approach
- Dynamic programming approach

Practice problem:

Estimating the cost of the entire plan

S(sid,name,age,addr) B(bid,title,author)
C(sid,bid, date)

Physical Query Plan

no. of tuples
$T(S)=10,000$
$T(B)=50,000$
$T(C)=300,000$
no. of pages
$B(S)=1,000$
$B(B)=5,000$
$B(C)=15,000$
$\mathrm{V}(\mathrm{B}$, author $)=500$
$7<=$ age $<=24^{5}$
$\mathrm{V}(\mathrm{B}$, author $)=500$ 7 <= age <= 24

Q. Compute

1. the cost and cardinality in steps (a) to (g)
2. the total cost

Assumptions (given):

- Unclustered B+tree index on B.author
- Clustered B+tree index on C.bid
- All index pages are in memory
- Unlimited memory

Student S

(File scan)

S(sid,name,age,addr)
$T(S)=10,000 \quad B(S)=1,000$
$V(B$, author $)=500^{4}$
B (bid,title, author): Un. $B+$ on author $T(B)=50,000 \quad B(B)=5,000$ C (sid,bid, date): Cl. B+ on bid $\quad T(C)=300,000 \quad B(C)=15,000$

S(sid,name,age,addr)
$T(S)=10,000 \quad B(S)=1,000$
$V(B, a u t h o r)=500^{5}$
$B($ bid,title, author): Un. $B+$ on author $T(B)=50,000 \quad B(B)=5,000$ C (sid,bid, date): CI. B+ on bid $\quad T(C)=300,000 \quad B(C)=15,000$

$$
T(C)=300,000 \quad B(C)=15,000
$$

S(sid,name,age,addr)
$T(S)=10,000 \quad B(S)=1,000$
$B(B)=5,000$
$V(B$, author $)=500^{6}$
B (bid,title, author): Un. $B+$ on author $T(B)=50,000$ $T(C)=300,000$
$B(C)=15,000$

- one index lookup per outer B tuple
- 1 book has $T(C) / T(B)=6$ checkouts (uniformity)
- \# C tuples per page = $\mathrm{T}(\mathrm{C}) / \mathrm{B}(\mathrm{C})=20$
- 6 tuples fit in at most 2 consecutive pages (clustered) could assume 1 page as well
Cost <= 100 * $2=200$

Cardinality = 100 * $6=600$
$=100$ * $\mathrm{T}(\mathrm{C}) / \operatorname{MAX}(100, \mathrm{~V}(\mathrm{C}$, bid $))$ assuming
$\mathrm{V}(\mathrm{C}$, bid $)=\mathrm{V}(\mathrm{B}$, bid $)=\mathrm{T}(\mathrm{B})=$ 50,000

S(sid,name,age,addr)
$\mathrm{V}(\mathrm{B}$, author $)=500^{7}$
$B($ bid,title, author): Un. $B+$ on author $T(B)=50,000 \quad B(B)=5,000$ $C($ sid,bid, date $): C I$. B+ on bid $\quad T(C)=300,000 \quad B(C)=15,000$

$T(S)=10,000 \quad B(S)=1,000$

S(sid,name,age,addr)
$T(S)=10,000 \quad B(S)=1,000$
$B(B)=5,000$
$V(B$, author $)=50 \theta^{8}$
B (bid,title,author): Un. B+ on author $T(B)=50,000$
$T(C)=300,000$
$B(C)=15,000$

Outer relation is already in (unlimited) memory need to scan S relation

Cost =
$B(S)=1000$
Cardinality = 600
(one student per checkout)
(On the fly)
(b) $\prod_{\text {bid }}$
(a) $\sigma_{\text {author }}=$ 'Olden Fames'

Book B

Checkout C
(Index scan)

S(sid,name,age,addr)
$T(S)=10,000 \quad B(S)=1,000$
$B(B)=5,000$
$\mathrm{V}(\mathrm{B}$, author $)=500^{9}$
B (bid,title,author): Un. B+ on author $T(B)=50,000$
$T(C)=300,000 \quad B(C)=15,000$

S(sid,name,age,addr)
$T(S)=10,000 \quad B(S)=1,000$
$B(B)=5,000$
$V(B$, author $)=500^{\circ}$
B (bid,title,author): Un. B+ on author $T(B)=50,000$
$T(C)=300,000 \quad B(C)=15,000$

S(sid,name,age,addr)
$T(S)=10,000 \quad B(S)=1,000$
$\mathrm{V}(\mathrm{B}$, author $)=500^{1}$
$B($ bid,title, author): Un. $B+$ on author $T(B)=50,000 \quad B(B)=5,000$
C(sid,bid,date): Cl. B+ on bid

$$
T(C)=300,000 \quad B(C)=15,000
$$

