
Query Optimization
Introduction to Databases

CompSci 316 Spring 2019



Announcements (Thu., Apr. 9)

• Friday 04/12: HW4-problem 1 due (gradiance)

• Monday 04/15: Hw4-problem 3 due (gradescope)
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Query optimization

• One logical plan → “best” physical plan

• Questions
• How to enumerate possible plans

• How to estimate costs

• How to pick the “best” one

• Often the goal is not getting the optimum plan, but 
instead avoiding the horrible ones
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1 second 1 hour1 minute

Any of these will do



Plan enumeration in relational algebra

• Apply relational algebra equivalences

Join reordering: × and ⋈ are associative and 
commutative (except column ordering, but that is 
unimportant)
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More relational algebra equivalences

• Convert 𝜎𝑝-× to/from ⋈𝑝: 𝜎𝑝 𝑅 × 𝑆 = 𝑅 ⋈𝑝 𝑆

• Merge/split 𝜎’s: 𝜎𝑝1 𝜎𝑝2𝑅 = 𝜎𝑝1∧𝑝2𝑅

• Merge/split 𝜋’s: 𝜋𝐿1 𝜋𝐿2𝑅 = 𝜋𝐿1𝑅, where 𝐿1 ⊆ 𝐿2
• Push down/pull up 𝜎:
𝜎𝑝∧𝑝𝑟∧𝑝𝑠 𝑅 ⋈𝑝′ 𝑆 = 𝜎𝑝𝑟𝑅 ⋈𝑝∧𝑝′ 𝜎𝑝𝑠𝑆 , where

• 𝑝𝑟 is a predicate involving only 𝑅 columns
• 𝑝𝑠 is a predicate involving only 𝑆 columns
• 𝑝 and 𝑝′ are predicates involving both 𝑅 and 𝑆 columns

• Push down 𝜋: 𝜋𝐿 𝜎𝑝𝑅 = 𝜋𝐿 𝜎𝑝 𝜋𝐿𝐿′𝑅 , where
• 𝐿′ is the set of columns referenced by 𝑝 that are not in 𝐿

• Many more (seemingly trivial) equivalences…
• Can be systematically used to transform a plan to new ones
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Relational query rewrite example
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𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member

Group×

User 𝜋Group.name
𝜎Member.gid = Group.gid
×

Member

Group

×

User

𝜎User.uid = Member.uid

𝜎name = “Bart”

Push down 𝜎

𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid = Member.uid

𝜎name = “Bart”

Convert 𝜎𝑝-× to ⋈𝑝



Heuristics-based query optimization

• Start with a logical plan

• Push selections/projections down as much as 
possible

• Why? Reduce the size of intermediate results

• Why not? May be expensive; maybe joins filter better

• Join smaller relations first, and avoid cross product
• Why? Reduce the size of intermediate results

• Why not? Size depends on join selectivity too

• Convert the transformed logical plan to a physical 
plan (by choosing appropriate physical operators)
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SQL query rewrite

• More complicated—subqueries and views divide a 
query into nested “blocks”

• Processing each block separately forces particular join 
methods and join order

• Even if the plan is optimal for each block, it may not be 
optimal for the entire query

• Unnest query: convert subqueries/views to joins

We can just deal with select-project-join queries
• Where the clean rules of relational algebra apply
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SQL query rewrite example

• SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);
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SQL query rewrite example

• SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

• SELECT name
FROM User, Member
WHERE User.uid = Member.uid;
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SQL query rewrite example

• SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

• SELECT name
FROM User, Member
WHERE User.uid = Member.uid;

• Wrong—consider two Bart’s, each joining two groups
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SQL query rewrite example

• SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

• SELECT name
FROM User, Member
WHERE User.uid = Member.uid;

• Wrong—consider two Bart’s, each joining two groups

• SELECT name
FROM (SELECT DISTINCT User.uid, name

FROM User, Member
WHERE User.uid = Member.uid);

• Right—assuming User.uid is a key
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Dealing with correlated subqueries

• SELECT gid FROM Group
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);
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Dealing with correlated subqueries

• SELECT gid FROM Group
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);

• SELECT gid
FROM Group, (SELECT gid, COUNT(*) AS cnt

FROM Member GROUP BY gid) t
WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield%';
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Dealing with correlated subqueries

• SELECT gid FROM Group
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);

• SELECT gid
FROM Group, (SELECT gid, COUNT(*) AS cnt

FROM Member GROUP BY gid) t
WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield%';

• New subquery is inefficient (it computes the size for 
every group)

• Suppose a group is empty?
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“Magic” decorrelation
• SELECT gid FROM Group

WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);

• WITH Supp_Group AS
(SELECT * FROM Group WHERE name LIKE 'Springfield%'),

Magic AS
(SELECT DISTINCT gid FROM Supp_Group),

DS AS
((SELECT Group.gid, COUNT(*) AS cnt

FROM Magic, Member WHERE Magic.gid = Member.gid
GROUP BY Member.gid) UNION

(SELECT gid, 0 AS cnt
FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp_Group.gid FROM Supp_Group, DS
WHERE Supp_Group.gid = DS.gid
AND min_size > DS.cnt;
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Process the outer query without the subquery

Collect bindings

Evaluate the subquery with bindings

Finally, refine
the outer query



Heuristics- vs. cost-based optimization

• Heuristics-based optimization
• Apply heuristics to rewrite plans into cheaper ones

• Cost-based optimization
• Rewrite logical plan to combine “blocks” as much as 

possible

• Optimize query block by block
• Enumerate logical plans (already covered)

• Estimate the cost of plans

• Pick a plan with acceptable cost

• Focus: select-project-join blocks
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Cost estimation

• We have: cost estimation for each operator
• Example: SORT(gid) takes 𝑂 𝐵 input × log𝑀 𝐵 input

• But what is 𝐵 input ?

• We need: size of intermediate results
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PROJECT (Group.title)

MERGE-JOIN (gid)

SCAN (Group)SORT (gid)

MERGE-JOIN (uid)

SCAN (Member)

SORT (uid)

SCAN (User)

FILTER (name = “Bart”)

Physical plan example:

Input to SORT(gid):
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http://www.learningresources.com/product/estimation+station.do

Cardinality estimation



Selections with equality predicates

• 𝑄: 𝜎𝐴=𝑣𝑅

• Suppose the following information is available
• Size of 𝑅: 𝑅

• Number of distinct 𝐴 values in 𝑅: 𝜋𝐴𝑅

• Assumptions
• Values of 𝐴 are uniformly distributed in 𝑅

• Values of 𝑣 in 𝑄 are uniformly distributed over all 
𝑅. 𝐴 values

• 𝑄 ≈ ൗ𝑅 𝜋𝐴𝑅

• Selectivity factor of 𝐴 = 𝑣 is ൗ1 𝜋𝐴𝑅
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Conjunctive predicates

• 𝑄: 𝜎𝐴=𝑢 ∧ 𝐵=𝑣𝑅

• Additional assumptions
• 𝐴 = 𝑢 and 𝐵 = 𝑣 are independent

• Counterexample: major and advisor

• No “over”-selection
• Counterexample: 𝐴 is the key

• 𝑄 ≈ ൗ𝑅 𝜋𝐴𝑅 ⋅ 𝜋𝐵𝑅

• Reduce total size by all selectivity factors
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Negated and disjunctive predicates

• 𝑄: 𝜎𝐴≠𝑣𝑅

• 𝑄 ≈ 𝑅 ⋅ 1 − ൗ1 𝜋𝐴𝑅

• Selectivity factor of ¬𝑝 is (1 − selectivity factor of 𝑝)

• 𝑄: 𝜎𝐴=𝑢 ∨ 𝐵=𝑣𝑅

• 𝑄 ≈ 𝑅 ⋅ ൗ1 𝜋𝐴𝑅
+ ൗ1 𝜋𝐵𝑅

?

• No! Tuples satisfying 𝐴 = 𝑢 and 𝐵 = 𝑣 are counted twice

• 𝑄 ≈ 𝑅 ⋅ ൗ1 𝜋𝐴𝑅
+ ൗ1 𝜋𝐵𝑅

− ൗ1 𝜋𝐴𝑅 𝜋𝐵𝑅

• Inclusion-exclusion principle
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Range predicates

• 𝑄: 𝜎𝐴>𝑣𝑅

• Not enough information!
• Just pick, say, 𝑄 ≈ 𝑅 ⋅ Τ1 3

• With more information
• Largest R.A value: high 𝑅. 𝐴

• Smallest R.A value: low 𝑅. 𝐴

• 𝑄 ≈ 𝑅 ⋅
high 𝑅.𝐴 −𝑣

high 𝑅.𝐴 −low 𝑅.𝐴

• In practice: sometimes the second highest and lowest 
are used instead

• The highest and the lowest are often used by inexperienced 
database designer to represent invalid values!
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Two-way equi-join

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶

• Assumption: containment of value sets
• Every tuple in the “smaller” relation (one with fewer 

distinct values for the join attribute) joins with some 
tuple in the other relation

• That is, if 𝜋𝐴𝑅 ≤ 𝜋𝐴𝑆 then 𝜋𝐴𝑅 ⊆ 𝜋𝐴𝑆

• Certainly not true in general

• But holds in the common case of foreign key joins

• 𝑄 ≈
𝑅 ⋅ 𝑆

max 𝜋𝐴𝑅 , 𝜋𝐴𝑆

• Selectivity factor of 𝑅. 𝐴 = 𝑆. 𝐴 is ൗ1 max 𝜋𝐴𝑅 , 𝜋𝐴𝑆

25



26



Multiway equi-join

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶,𝐷

• What is the number of distinct 𝐶 values in the join 
of 𝑅 and 𝑆?

• Assumption: preservation of value sets
• A non-join attribute does not lose values from its set of 

possible values

• That is, if 𝐴 is in 𝑅 but not 𝑆, then 𝜋𝐴 𝑅 ⋈ 𝑆 = 𝜋𝐴𝑅

• Certainly not true in general

• But holds in the common case of foreign key joins (for 
value sets from the referencing table)
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Multiway equi-join (cont’d)

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶,𝐷

• Start with the product of relation sizes 
• 𝑅 ⋅ 𝑆 ⋅ 𝑇

• Reduce the total size by the selectivity factor of 
each join predicate

• 𝑅. 𝐵 = 𝑆. 𝐵: ൗ1 max 𝜋𝐵𝑅 , 𝜋𝐵𝑆

• 𝑆. 𝐶 = 𝑇. 𝐶: ൗ1 max 𝜋𝐶𝑆 , 𝜋𝐶𝑇

• 𝑄 ≈
𝑅 ⋅ 𝑆 ⋅|𝑇|

max 𝜋𝐵𝑅 , 𝜋𝐵𝑆 ⋅max 𝜋𝐶𝑆 , 𝜋𝐶𝑇
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Cost estimation: summary

• Using similar ideas, we can estimate the size of 
projection, duplicate elimination, union, difference, 
aggregation (with grouping)

• Lots of assumptions and very rough estimation
• Accurate estimate is not needed

• Maybe okay if we overestimate or underestimate 
consistently

• May lead to very nasty optimizer “hints”
SELECT * FROM User WHERE pop > 0.9;

SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;

• Not covered: better estimation using histograms
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Search strategy
30

http://1.bp.blogspot.com/-Motdu8reRKs/TgyAi4ki5QI/AAAAAAAAAKE/mi8ejfZ8S7U/s1600/cornMaze.jpg



Search space

• Huge!

• “Bushy” plan example:

• Just considering different join orders, there are 
2𝑛−2 !

𝑛−1 !
bushy plans for 𝑅1 ⋈ ⋯ ⋈ 𝑅𝑛

• 30240 for 𝑛 = 6

• And there are more if we consider:
• Multiway joins

• Different join methods

• Placement of selection and projection operators

31

⋈

𝑅2 𝑅1 𝑅3

𝑅4 𝑅5

⋈ ⋈

⋈



32



Left-deep plans

• Heuristic: consider only “left-deep” plans, in which 
only the left child can be a join

• Tend to be better than plans of other shapes, because many 
join algorithms scan inner (right) relation multiple times—
you will not want it to be a complex subtree

• How many left-deep plans are there for 𝑅1 ⋈ ⋯ ⋈ 𝑅𝑛?
• Significantly fewer, but still lots— 𝑛! (720 for 𝑛 = 6)
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A greedy algorithm

• 𝑆1, … , 𝑆𝑛
• Say selections have been pushed down; i.e., 𝑆𝑖 = 𝜎𝑝 𝑅𝑖

• Start with the pair 𝑆𝑖 , 𝑆𝑗 with the smallest estimated 
size for 𝑆𝑖 ⋈ 𝑆𝑗

• Repeat until no relation is left:
Pick 𝑆𝑘 from the remaining relations such that the join 
of 𝑆𝑘 and the current result yields an intermediate 
result of the smallest size
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Current subplan

… , 𝑆𝑘 , 𝑆𝑙 , 𝑆𝑚, …
Remaining

relations
to be joined

Pick most efficient join method

⋈

𝑆𝑘

Minimize expected size



Selinger’s algorithm: A dynamic 
programming approach

Optimal for “whole” made up from 

optimal for “parts”
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Principle of Optimality

Query: R1        R2         R3         R4          R5

R3 R2

R4

R1

R5

Suppose, 

this is an Optimal Plan

for joining R1…R5:
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Principle of Optimality

Query: R1        R2         R3         R4          R5

R3 R2

R4

R1

R5

Then, what can you say 

about this sub-plan?

This has to be the 

optimal plan for joining R3, R2, R4, R1

Suppose, 

this is an Optimal Plan

for joining R1…R5:
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Principle of Optimality

Query: R1        R2         R3         R4          R5

R3 R2

R4

R1

R5

Suppose, 

this is an Optimal Plan

for joining R1…R5:
This has to be the 

optimal plan for joining R3, R2, R4

Then, what can you say 

about this sub-plan?

38

We are using the
associativity and 
commutativity of joins
(R ⨝ S) ⨝ T = R ⨝ (S ⨝ T)
R ⨝ S = S ⨝ R



Exploiting Principle of 
Optimality

Query: R1        R2                …                 Rn

R3 R1

R2

R2 R3

R1

Optimal

for joining R1, R2, R3

Sub-Optimal

for joining R1, R2, R3

Both are giving the same result 
R2 ⨝ R3 ⨝ R1 = R3 ⨝ R1 ⨝ R2
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OPT ( { R1, R2, R3 } ): 

OPT ( { R2, R3 } )   + cost-to-join ({R2, R3 }, {R1})

OPT ( { R1, R2 } )   + cost-to-join ({R1, R2 }, {R3})

OPT ( { R1, R3 } )   + cost-to-join ({R1, R3 }, {R2})

Min

Selinger Algorithm:
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Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:
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Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:
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Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:

e.g. All possible permutations of R1, R3, R4 
have been considered

after OPT({R1, R3, R4}) has been computed
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Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:
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Q. How to optimally compute join of {R1, R2, R3, R4}?

Ans: First optimally join {R1, R3, R4} then join with R2 as inner.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:
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Q. How to optimally compute join of {R1, R3, R4}?

Ans: First optimally join {R1, R3}, then join with R4 as inner.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:

46

Q. How to optimally compute join of {R1, R3}?

Ans: First optimally join {R3}, then join with R1 as inner.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress

of

algorithm

Selinger Algorithm:
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Q. How to optimally compute join of {R3}?

Ans: Single relation – so optimally scan R3.



R2

R3

R4

R1

Selinger Algorithm:

Final optimal plan:

Query: R1        R2         R3         R4

NOTE : There is a one-one correspondence between the permutation (R3, R1, R4, R2)
and the above left deep plan
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The need for “interesting order”

• Optimal plan may not have an optimal sub-plan in 
practice!

• Example: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶 ⋈ 𝑇 𝐴,𝐷

• Best plan for 𝑅 ⋈ 𝑆: hash join (beats sort-merge join)

• Best overall plan: sort-merge join 𝑅 and 𝑆, and then 
sort-merge join with 𝑇

• Subplan of the optimal plan is not optimal!

• Why?
• The result of the sort-merge join of 𝑅 and 𝑆 is sorted on 𝐴

• This is an interesting order that can be exploited by later 
processing (e.g., join, dup elimination, GROUP BY, ORDER
BY, etc.)!
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Dealing with interesting orders

When picking the best plan

• Comparing their costs is not enough
• Plans are not totally ordered by cost anymore

• Comparing interesting orders is also needed
• Plans are now partially ordered

• Plan 𝑋 is better than plan 𝑌 if
• Cost of 𝑋 is lower than 𝑌, and

• Interesting orders produced by 𝑋 “subsume” those produced by 𝑌

• Need to keep a set of optimal plans for joining every 
combination of 𝑘 tables

• At most one for each interesting order
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Summary

• Relational algebra equivalence

• SQL rewrite tricks

• Heuristics-based optimization

• Cost-based optimization
• Need statistics to estimate sizes of intermediate results

• Greedy approach

• Dynamic programming approach

51



Practice problem:
Estimating the cost of the entire plan
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Student SCheckout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

Physical Query Plan
Q. Compute 
1. the cost and cardinality in 

steps (a)  to (g)

2. the total cost

Assumptions (given):
• Unclustered B+tree

index on B.author

• Clustered B+tree index 

on C.bid

• All index pages are in 

memory

• Unlimited memory

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author)

C(sid,bid,date)

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop, 

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

V(B,author) = 500

7 <= age <= 24

(File scan)

no. of tuples no. of pages
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Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop, 

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 

T(B) / V(B, author)

= 50,000/500 

= 100  (unclustered)    

Cardinality = 

100

(a)

(File scan)
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Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop, 

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 

0 (on the fly)

Cardinality = 

100

(b)

(File scan)
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Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop, 

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

• one index lookup per outer B 

tuple

• 1 book has T(C)/ T(B) = 6 

checkouts (uniformity)

• # C tuples per page = 

T(C)/B(C) = 20

• 6 tuples fit in at most 2 

consecutive pages (clustered) 

could assume 1 page as well

Cost <= 

100 * 2= 200     

Cardinality = 

100 * 6 = 600

= 100 * T(C)/ MAX(100, V(C, bid)) 

assuming 

V(C, bid) = V(B, bid) = T(B) = 

50,000

(c)

(File scan)
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Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop, 

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 

0 (on the fly)

Cardinality = 

600

(d)

(File scan)
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Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop, 

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Outer relation is already in 

(unlimited) memory

need to scan S relation

Cost = 

B(S) = 1000 

Cardinality = 

600

(one student per checkout)

(e)

(File scan)
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Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop, 

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 

0 (on the fly)

Cardinality = 

600 * 7/18 = 234 (approx)

(f)

(File scan)
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Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop, 

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 

0 (on the fly)

Cardinality = 

234

(g)

(File scan)



61

Student S

Checkout C

bid

(Index scan)

(Index scan)

(f)  12<age<20

(c)

B(S)=1,000

B(B)=5,000

B(C)=15,000

T(S)=10,000

T(B)=50,000

T(C)=300,000

S(sid,name,age,addr)

B(bid,title,author): Un. B+ on author

C(sid,bid,date): Cl. B+ on bid

Book B

(File scan)

V(B,author) = 500

7 <= age <= 24

sid

(Block nested loop

S inner)
(e)

(g)  name

(Indexed-nested loop, 

B outer, C inner)

(a)  author = ‘Olden Fames’

(b)  bid

(d)  sid (On the fly)

(On the fly)

Total cost =

1300 

Final cardinality =

234 (approx)

(total)(On the fly)

(On the fly)


