Query Optimization
Introduction to Databases
CompSci 316 Spring 2019

E- DUKE
COMPUTER SCIENCE

Announcements (Thu., Apr. 9)

* Friday 04/12: HW4-problem 1 due (gradiance)
* Monday 04/15: Hw4-problem 3 due (gradescope)

Query optimization

* Questions
* How to enumerate possible plans
* How to estimate costs
* How to pick the “best” one

* Often the goal is not getting the optimum plan, but
instead avoiding the horrible ones

/ Any of these will do
— | — — —t -

1second 1 minute 1 hour

Plan enumeration in relational algebra

* Apply relational algebra equivalences

%~ Join reordering: X and X are associative and
commutative (except column ordering, but that is
unimportant)

VANEVANEWANE
VANMVANRERIAN

More relational algebra equivalences

* Convert g;,-X toffrom ;:
* Merge/split o’s:
* Merge/split ’s: ,wherelL; C L,

* Push down/pull up o:
, where

* p,is a predicate involving only R columns
* ps is a predicate involving only S columns
* pand p’ are predicates involving both R and S columns

e Push down m: , where
L' is the set of columns referenced by p that are notin L

* Many more (seemingly trivial) equivalences...
* Can be systematically used to transform a plan to new ones

Relational query rewrite example

7|-[Group.name

Ol-User.name:“Bart” A User.uid = Member.uid A Member.gid = Group.gid

X

7 N\

X Group

VR

User Member T[Group name

O-I\/Iember gid = Group.gid

G
/ roup T[Group name

O-User uid = Member.uid

L ~ \IVlember gid = Group.gid
Member / Group
O name = “Bart” User uid = Member.uid
U;er I\/lember
0]

| hame = “Bart”’
User

Heuristics-based query optimization

* Start with a logical plan

* Why? Reduce the size of intermediate results
* Why not? May be expensive; maybe joins filter better

* Why? Reduce the size of intermediate results
* Why not? Size depends on join selectivity too

* Convert the transformed logical plan to a physical
plan (by choosing appropriate physical operators)

SQL query rewrite

* More complicated—subqueries and views divide a
query into nested “blocks”

* Processing each block separately forces particular join
methods and join order

* Even if the plan is optimal for each block, it may not be
optimal for the entire query

* Unnest query: convert subqueries/views to joins

®We can just deal with select-project-join queries
* Where the clean rules of relational algebra apply

' \
@__%mc“\')\63\CGZVV‘
\.)\OV\

SQL query rewrite example

e SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

SQL query rewrite example

e SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

e SELECT name
FROM User, Member
WHERE User.uid = Member.uid;

SQL query rewrite example

e SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

e SELECT name
FROM User, Member
WHERE User.uid = Member.uid;

* Wrong—consider two Bart’s, each joining two groups

SQL query rewrite example

e SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

e SELECT name
FROM User, Member
WHERE User.uid = Member.uid;

* Wrong—consider two Bart’s, each joining two groups
* SELECT name
FROM (SELECT DISTINCT User.uid, name

FROM User, Member
WHERE User.uid = Member.uid);

* Right—assuming User.uid is a key

Dealing with correlated subqueries

e SELECT gid FROM
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member
WHERE Member.gid =);

Dealing with correlated subqueries

e SELECT gid FROM
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member
WHERE Member.gid =);

e SELECT gid
FROM Group, (SELECT gid, COUNT(*) AS cnt
FROM Member GROUP BY gid) t
WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield%';

Dealing with correlated subqueries

e SELECT gid FROM
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member
WHERE Member.gid =);

e SELECT gid
FROM Group, (SELECT gid, COUNT(*) AS cnt
FROM Member GROUP BY gid) t
WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield%';

* New subquery is inefficient (it computes the size for
every group)

* Suppose a group is empty?

“Magic” decorrelation

e SELECT gid FROM
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member
WHERE Member.gid =);

* WITH AS
(SELECT * FROM Group WHERE name LIKE 'Springfield%'),

AS
(SELECT DISTINCT gid FROM Supp_Group),

AS
((SELECT Group.gid, COUNT(*) AS cnt
FROM Magic, Member WHERE Magic.gid = Member.gid
GROUP BY Member.gid) UNION
(SELECT gid, O AS cnt
FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp_Group.gid FROM Supp_Group, DS
WHERE Supp_Group.gid = DS.gid
AND min_size > DS.cnt;

Heuristics- vs. cost-based optimization

* Apply heuristics to rewrite plans into cheaper ones

logical plan to combine “blocks” as much as
possible
query block by block
* Enumerate logical plans (already covered)
* Estimate the cost of plans
* Pick a plan with acceptable cost

* Focus: select-project-join blocks

Cost estimation

Physical plan example: PROJECT (Group.title)

MERGE-JOIN (gid)
N
SOR}(gid) SCAN (Group)
Input to SORT(gid): MERGEJOIN (uid)
SORT (uid)
N

FILTER (hame = “Bart”)
SCAN (Member)

|
SCAN (User)

* We have: cost estimation for each operator
« Example: SORT(gid) takes O(B(input) X log,, B(input))
* But what is B(input)?

e We need:

Cardinality estimation

http://www.learningresources.com/product/estimation+station.do

19

Selections with equality predicates
. Q: \ &h"‘ L = 2 -

-— /L|-/ Q' 1
* Suppose the following information is available R
* Size of R:

* Number of distinct A values in R:
* Assumptions
* Values of A are uniformly distributed in R
* Values of v in Q are uniformly distributed over all
R. A values

* Selectivity factor of (A = v) is \ L\ e
- To®\2
(=9 TR =N

Conjunctive predicates

° Q:
* Additional assumptions
* (A=u)and (B =v) ar@pendent
* Counterexample: major and advisor

* No “over”-selection
* Counterexample: 4 is the key

Negated and disjunctive predicates

. Q:
=z

* Selectivity factor of —p is (1 — selectivity factor of p)
o Q:
. ~ 1 1
Q1= IR (Yimurt + Yimarl)?

* No! Tuples satisfying (A = u) and (B = v) are counted twice

* Inclusion-exclusion principle

Range predicates

. Q:

* Not enough information!

* Just pick, say, @

* With more information
* Largest R.A value: —
 Smallest R.A value: =

* In practice: sometimes the highest and lowest
are used instead = =

* The highest and the lowest are often used by inexperienced
database designer to represent invalid values!

.5
Two-way equi-join &\ \O

/@\B \%,O/

* Assumption:

25

N

* Every tuple in the “smaller” relation (one with fewer /)(

distinct values for the join attribute) joins with some
tuple in the other relation <

* Thatis, if |TyR| < |m4S| then myR € S /ﬁx >
* Certainly not true in general Qv\

e But holds in the common case of foreign key joins
common gn key | ,<\

Multiway equi-join

~

° Q: .
* What is the number of distinct C values in the join
of R and S?

* Assumption:
* A non-join attribute does not lose values from its set of
possible values
e Thatis, if Aisin R but not S, thenm,(R ™ S) = m4R

* Certainly not true in general

* But holds in the common case of foreign key joins (for
value sets from the referencing table)

Multiway equi-join (cont’d)
. 0: 3 B
* Start with the product of relation sizes
* [R]-|S|-|T|
* Reduce the total size by the selectivity factor of
each join predicate
*R.B=S.B:

e S.C=T.C:

Cost estimation: summary

* Using similar ideas, we can estimate the size of
projection, duplicate elimination, union, difference,
aggregation (with grouping)

* Lots of assumptions and very rough estimatio

e Accurate estimate is not needed

* Maybe okay if we overestimate or underestimate
consistently

* May lead to very nasty optimizer “hints”

SELECT * FROM User WHERE pop > 0.9;

SELECT * FROM User WHERE pop > 0.9 ;
* Not covered: better estimation using
////_7

Search strategy 5 7 ’—\ B

http://1.bp.blogspot.com/-Motdu8reRKs/TgyAi4ki5Ql/AAAAAAAAAKE/mi8ejfZ857U/s1600/cornMaze.jpg

Search space @/\
AN

oo /\ 4

 “Bushy” plan example: /\ /\ '\ﬁ,

R, Ry R;
VAN

* Just considering different join orders, there are
bushy plans for Ry X --- X R,
* 30240 forn =6

* And there are more if we consider:
* Multiway joins
* Different join methods
* Placement of selection and projection operators

33

Left-deep plans vV
oQ | :
/\I\ .

* Heuristic: consider only “ ” plans, in which
only the left child can be ajoin

* Tend to be better than plans of other shapes, because many
join algorithms scan inner (right) relation multiple times—
you will not want it to be a complex subtree

* How many left-deep plans are there for Ry X --- ¥ R,;?

» Significantly fewer, but still lots—n! (720 forn = 6)
=

A greedy algorithm L7 1’@ﬁ
© Sy, Sy

* Say selections have been pushed down;i.e., S; = 0, (R;)

* Start with the pair §;, S; with the smallest estimated
size for §; S;

* Repeat until no relation is left:
Pick Sj, from the remaining relations such that the join
of S; and the current result yields an intermediate
result of the smallest size

> s S0, S5, S, .

@Igorlthm A dynamic

programming approach

Optimal for “whole” made up from
optimal for “parts”

SN
SQ\F \(50 '

Principle of Optimality

Query: R1D><I R2D>< R3 > R4 > R5

/"\
o) 7'\ J’“Z‘
\ AN
< Q\)\ ‘V‘L\ ?”\
Q uppose,
| this is an Optimal Plan
L for joining R1...R5:

36

Principle of Optimality

Query: R1D><I R2D>< R3 > R4 > R5

A.
Then, what can you say 7 /{><\
. / N
about this sub-plan? ’,~/><\ '~.R5
g

/‘/‘ R3 R2 ./. Suppose’
Lomimimm g this is an Optimal Plan

This has to be tHe for joining R1...R5:
optimal plan for joining R3, R2, R4, R1

37

Principle of Optimality

Query: R1D><I R2D>< R3 > R4 > R5

Then, what can you say /><\
about this sub-plan? y ‘/><\ R5
associativity and

commutativity of joins
(RBAS)DIT=RD< (ST
R>IS=SXR

R3 R2 , Suppose,
Lo ' this is an Optimal Plan

for joining R1...R5:

This has to be the
optimal plan for joining R3, R2, R4

38

Exploiting Principle of
Optimality

Query: R1D><1 R2 D ><1 Rn

Both are giving the same result
R2 DI R3 P<I R1=R3 D1 R1 < R2

/X\ R1 /X\ R2

R2 R3 R3 R1
Optimal Sub-Optimal
for joining R1, R2, R3 ~ forjoining R1, R2, R3

39

Selinger Algorithm:

\A/

(PT({Rl R2,R3F) /;\

O /\V U

Min < oPT({R2, R3})

[\
_

>

—

é 7"

V

q
NNog

\
{ " /OPT ({R1, R2}) §+ cost-to-join ({R1, R2 }, {R3})

+ cost-to-join ({R2, R3 }, {R1})

—

OPT ({R1, ée. } N + cost-to-join ({R1, R3 }, {R2})

’_,./’

40

Selinger Algorithm:

Query: R1D><1 R2><1 R3 ><1 R4

Progress
of
{R1,R2,R3,R4} algorithm

/\

{R1,R2,R3} {R1,R2,R4} {R1,R3,R4} {R2,R3, R4}

{R1,R2} {R1,R3} {R1,R4} {R2,R3} {R2,R4} {R3,R4}

DNl

{R1} {R2} {R3} {R4}

Selinger Algorithm:

Query: R1D><1 R2D><1 R3 ><1 R4

Progress
of
{R1,R2,R3,R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3,R4} {R2,R3, R4}

{R1,R2} {R1,R3} {R1,R4} {R2,R3} {R2,R4} {R3,R4}

N el

{R1} {R2} {R3} {R4}

Selinger Algorithm: m —%@
Query: R1 >< Rms > R4

e.g. All possible permutations of R1, R3, R4
have been considered Progress
after OPT({R1, R3, R4}) has been computed of
{R1,R2,R3,R4} algorithm

SN S

{R1,R2,R3} {R1,R2,R4} (IR1,R3,R4} XR2, R3, R4}

oo i

{R1,R2} {R1,R3} {R1,R4} {R2,R3} {R2,R4} {R3,R4}

N

{R1} {R2} {R3} {R4}

43

Selinger Algorithm:

Query: R1D><1 R2D><1 R3 ><1 R4

Q. How to optimally compute join of {R1, R2, R3, R4} 1
Progress

Ans: First optimally join {R1, R3, R4} then join with R2 as inner. of
{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3,R4} {R2,R3, R4}

{R1,R2} {R1,R3} {R1,R4} {R2,R3} {R2,R4} {R3,R4}

N el

{R1} {R2} {R3} {R4}

44

Selinger Algorithm:

Query: R1D><1 R2D><1 R3 ><1 R4

Q. How to optimally compute join of {R1, R3, R4} 1
Progress

Ans: First optimally join {R1, R3}, then join with R4 as inner. of
{R1,R2,R3,R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3 R4} {R2 R3 R4}

{R1,R2} {R1,R3} {R1,R4} {R2,R3} {R2,R4} {R3,R4}

N el

{R1} {R2} {R3} {R4}

45

Selinger Algorithm:

Query: R1D><1 R2D><1 R3 ><1 R4

Q. How to optimally compute join of {R1, R3}? 1
Progress

Ans: First optimally join {R3}, then join with R1 as inner. of
{R1,R2,R3,R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3,R4} {R2, R3, R4}

{R1,R2} {R1,R3} {R1,R4} {R2,R3} {R2,R4} {R3,R4}

N el

{R1} {R2} {R3} {R4}

46

Selinger Algorithm:

Query: R1D><1 R2D><1 R3 ><1 R4

Q. How to optimally compute join of {R3}?

Progress

Ans: Single relation — so optimally scan R3. of
@1, R2, R3, R4} algorithm
N 2_

{R1,R2,R3} {R1,R2,R4}/{R1,R3, R4} fR2,

R3,R4}

Pasger =\

{RL,R2} {R1,R3} {R2,R3} {R2, R4}

{R3, R4}

S

47

Selinger Algorithm:

Query: R1D><I R2D>< R3 D> R4 |
\or?

'' 3‘/03?

NOTE : There is a one-one correspondence be
and the above left deep plan

e permutation (R3, R1, R4, R2)

48

The need for “interesting order”

* Optimal plan may not have an optimal sub-planin
practice!

« Example: R(A,B) x S(A,C) x T(A,D)
* Best plan for R = S: hash join (beats sort-merge join)

* Best overall plan: sort-merge join R and S, and then
sort-merge join with T
* Subplan of the optimal plan is not optimal!

* Why?
* The result of the sort-merge join of R and S is sorted on A
* Thisis an that can be exploited by later

processing (e.g., join, dup elimination, GROUP BY, ORDER
BY, etc.)!

Dealing with interesting orders

When picking the best plan

* Comparing their costs is not enough
* Plans are not totally ordered by cost anymore

* Comparing interesting orders is also needed
* Plans are now partially ordered

* Plan X is better than plan Y if
e Costof XislowerthanV, and

* Interesting orders produced by X “subsume” those produced by Y

* Need to keep a set of optimal plans for joining every
combination of k tables

* At most one for each interesting order

Summary

* Relational algebra equivalence
* SQL rewrite tricks
* Heuristics-based optimization

* Cost-based optimization
* Need statistics to estimate sizes of intermediate results
* Greedy approach
* Dynamic programming approach

Practice problem:
Estimating the cost of the entire plan

S(sid,name,age,addr) no. of tuples no. of pages V(B,author) = 500

B(bid. title,author) 15?18888 B(5)=1,000 7<=age<=24"
C(sid,bid,date) TO=300.000 B(C)=15,000 V(B,author) = 500
. | 7 <= age <= 24
Physical Query Plan
©nthefly) (9) I ame Q. Compute
1. the cost and cardinality in
©nthefly) (f) g 12chgeca0 steps (a) to (9)

2. the total cost

(Block nested loopr—L— (g

S inner) (4 Assumptions (given):
. Unclustered B+tree
(d) IT iy (On the fly) index on B.author
. Clustered B+tree index
(Indexed-nested loop, ’ on C.bid
B outer, C inner) N (©) + Allindex pages are in
/ memory
©nthefly) () T . Unlimited memory
(a) G author = ‘OITen Fames’ CheCkOUt C StUdent S
Book B (Index scan) (File scan)

(Index scan)

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000 V(B,author) = 500+
B(bidtitle,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24

C(sid,bid,date): CI. B+ on bid T(C)=300,000 B(C)=15,000
(On the fly) (g)Hname (a)
Cost =
(On the fly) f o 12<hge<20 T(B) /V(B, author)
= 50,000/500
(Block nested loop—. =100 (unclustered)

(e)
S inner)
Cardinality =
(d) IT 4 (On the fly) 100

(Indexed-nested Ioop

B outer, C inner) 1 (0 Student S
b'd (File scan)

(On the fly) (b) H bid
(a) G author = ‘Olden Fames’ CheCkOut C

Boc;k B (Index scan)
(Index scan)

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000

V(B,author) = 5005
/<=age<=24

B(bid,title,author): Un. B+ on author T(B)=50,000 B(B)=5,000
C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000
(On the fly) (g)nname (b)
Cost =
©Onthe® (f) o 12<age<20 O (on the fly)

(Block nested loop—. Cardinality =

(e)
S inner) / 100
(d) IT sig(On the fly)

(Indexed-nested loop,

B outer, C inner) > (© StudentS

7 \ (File scan)

(On the fly) (b) I1 bid
|

(a) O author = ‘Olc|len Fames’ CheCkOut C
Book B (Index scan)

(Index scan)

S(sid,name,age,addr) T(S)=10,000
B(bid,title,author): Un. B+ on author T(B)=50,000
C(sid,bid,date): Cl. B+ on bid

©nthefly) (9) I ame (C)

(Onthe fly) (f) G 12<age<20

(Block nested loop—.

(e)
S inner) /
(d) IT 4 (On the fly)

(Indexed-nested loop,
B outer, C inner)

= (0

/ bid

(On the fly) (b) I1 bid
|

Student S
(File scan)

Checkout C
(Index scan)

(a) G author = ‘Olden Fames'’

|
Book B
(Index scan)

B(S)=1,000
B(B)=5,000
T(C)=300,000 B(C)=15,000

V(B,author) = 500°
[<=age <=24

« one index lookup per outer B
tuple

« 1book has T(C)/ T(B) =6
checkouts (uniformity)

« # C tuples per page =
T(C)/B(C) =20

» 6 tuples fit in at most 2
consecutive pages (clustered)
could assume 1 page as well

Cost <=

100 * 2= 200

Cardinality =
100 * 6 = 600

=100 * T(C)/ MAX(100, V(C, bid))
assuming

V(C, bid) = V(B, bid) = T(B) =
50,000

S(sid,name,age,addr) T(S5)=10,000 B(S)=1,000 V(B,author) = 5007
B(bidtitle,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24

C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000
(On the fly) (g) IT name (d)
(On the) (f) © 12<age<20 Cost =

he fl
(Block nested loop—. 0 (on the fly)

(e)
> Inner) / Cardinality =
(d) TT gy (On the fly) 600

(Indexed-nested loop,

B outer, C inner) N (© Student S
(File scan)

(On the fly) (b) H bid
|

(a) O author = ‘Olc|len Fames’ CheCkOut C
Book B (Index scan)

(Index scan)

S(sid,name,age,addr) T(S5)=10,000 B(S)=1,000 V(B,author) = 5008
B(bidtitle,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24
C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000

©nthefly) (9) IT name (e)
Outer relation is already In

Onhe () 6 15<hge<z0 (unlimited) memory
need to scan S relation

(Block nested loop—.

(e)
S inner) / Cost =
(d) IT 4 (On the fly) B(S) = 1000

(Indexed-nested loop, Cardinality =

B outer, C inner) N © Student S 600
(File scan) (one student per checkout)

(On the fly) (b) H bid
|

(a) O author = ‘Olc|len Fames’ CheCkOut C
Book B (Index scan)

(Index scan)

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000 V(B,author) = 500°
B(bidtitle,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24

C(sid.bid,date): CI. B+ on bid T(C)=300,000 B(C)=15,000
©nthefly) (9) IT name (f)
Cost =
O 1) () & 1) ecz0 O (on the fly)

(Block nested loop—. Cardinality =

(e)
S inner) / 600 * 7/18 = 234 (approx)
(d) IT sig(On the fly)

(Indexed-nested Ioop

B outer, C inner) 1 (0 Student S
b'd (File scan)

(Onthefly) () H i

(a) O author = ‘Olc|len Fames’ CheCkOut C
Book B (Index scan)

(Index scan)

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000 V(B,author) = 500°
B(bid,title,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24

C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000
©nthefly) () Il yame (g)
Cost =
(On the fly) Mo 12<hge<20 0 (on the fly)

(Block nested loop—. Cardinality =

(e)
S inner) / 234
(d) IT sig(On the fly)

(Indexed-nested loop,

B outer, C inner) N (© Student S
(File scan)

(On the fly) (b) H bid
|

(a) O author = ‘Olc|len Fames’ CheCkOut C
Book B (Index scan)

(Index scan)

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000
B(bid,title,author): Un. B+ on author T(B)=50,000 B(B)=5,000
C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000

©nthefly) (9) ITame (tOta l)

Total cost =
(On the fly) (f) O 12<age<20 1300

V(B,author) = 500"
/<=age<=24

(Block nested loop—.

(e) . o
S inner Final cardinality =
) / 234 (approx)
(d) IT 4 (On the fly)

(Indexed-nested loop,

B outer, C inner) N (© Student S
(File scan)

(On the fly) (b) 1|‘[bid
(a) G author = ‘Olden Fames’ CheCkOut C

Boc;k B (Index scan)
(Index scan)

