Query Optimization
Introduction to Databases
CompSci 316 Spring 2019

E. DUKE
COMPUTER SCIENCE

Announcements (Thu., Apr. 9)

* Friday 04/12: HW4-problem 1 due (gradiance)
* Monday 04/15: Hw4-problem 3 due (gradescope)

Query optimization

* Questions
* How to enumerate possible plans
* How to estimate costs
* How to pick the “best” one
* Often the goal is not getting the optimum plan, but
instead avoiding the horrible ones

/ Any of these will do

1 1
1second 1minute 1 hour

Plan enumeration in relational algebra

* Apply relational algebra equivalences
< Join reordering: X and ~ are associative and

commutative (except column ordering, but that is
unimportant)
[l X Do
D/\T - D/\T - S/\] = e
/N /N /N
R N S R R T

More relational algebra equivalences

* Convert ap,-X toffrom
* Merge/split g’s:
* Merge/split ’s: ,wherelL; € L,
* Push down/pull up o:
, where

* p, is a predicate involving only R columns

* ps is a predicate involving only S columns

* pandp’ are predicates involving both R and S columns
* Push down m: , where

* L' is the set of columns referenced by p that are notin L

* Many more (seemingly trivial) equivalences...
* Can be systematically used to transform a plan to new ones

Relational query rewrite example

7|7:Group.name

?_User.name:“Bart" A User.uid = Member.uid A Member.gid = Group.gid
X

7N
x Grou|
PR P
User Member 7|7:Group.name

gMember.gid =Group.gid

Chou
P ?Group.name
U:

ser.uid = Member.uid

% N\Member‘gid =Group.gid
N
/ Member Group
O name = “Bart” ™ yser.uid = Member.uid

| N
User Member

O name = “Bart”
|
User

4/9/19

Heuristics-based query optimization

* Start with a logical plan

* Why? Reduce the size of intermediate results
* Why not? May be expensive; maybe joins filter better

* Why? Reduce the size of intermediate results

* Why not? Size depends on join selectivity too
* Convert the transformed logical plan to a physical
plan (by choosing appropriate physical operators)

SQL query rewrite

* More complicated—subqueries and views divide a
query into nested “blocks”

* Processing each block separately forces particular join
methods and join order

* Evenif the plan is optimal for each block, it may not be
optimal for the entire query

* Unnest query: convert subqueries/views to joins

& We can just deal with select-project-join queries
* Where the clean rules of relational algebra apply

SQL query rewrite example

* SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

* SELECT name
FROM User, Member
WHERE User.uid = Member.uid;
* Wrong—consider two Bart’s, each joining two groups

* SELECT name
FROM (SELECT DISTINCT User.uid, name
FROM User, Member
WHERE User.uid = Member.uid);
* Right—assuming User.uid is a key

Dealing with correlated subqueries

» SELECT gid FROM
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member
WHERE Member.gid =);

* SELECT gid
FROM Group, (SELECT gid, COUNT(*) AS cnt
FROM Member GROUP BY gid) t
WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield%';
* New subquery is inefficient (it computes the size for
every group)

* Suppose a group is empty?

“Magic” decorrelation

« SELECT gid FROM
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member
WHERE Member. gid=);
« WITH AS Process the outer query without the subquery
(SELECT * FROM Group WHERE name LIKE 'Springfield%"),
AS Collect bindings
(SELECT DISTINCT gid FROM Supp_Group),
AS Evaluate the subquery with bindings
((SELECT Group.gid, COUNT(*) AS cnt
FROM Magic, Member WHERE Magic.gid = Member.gid
GROUP BY Member.gid) UNION
(SELECT gid, 0 AS cnt
FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp_Group.gid FROM Supp_Group, DS Finally, refine
WHERE Supp_Group.gid = DS.gid the outer query
AND min_size > DS.cnt;

Heuristics- vs. cost-based optimization

* Apply heuristics to rewrite plans into cheaper ones

logical plan to combine “blocks” as much as
possible
query block by block
« Enumerate logical plans (already covered)
« Estimate the cost of plans
* Pick a plan with acceptable cost
* Focus: select-project-join blocks

Cost estimation

Physical plan example: PROJECT (Croup-title)
MERGE-JOIN (gid)
~N
SORT (gidﬂCAN (Group)
Input to SORT(gid): | MERGE-JOIN (uid) -
SORT (uid)

FILTER (name = “Bart”) ;
| SCAN (Member) :
SCAN (User) H

* We have: cost estimation for each operator
* Example: SORT(gid) takes O (B (input)xlogy, B(input))
* But what is B(input)?
* We need: size of intermediate results

Cardinality estimation

hitp://ww do

Selections with equality predicates

* Q: UA:UR

* Suppose the following information is available
* Size of R: |R|
* Number of distinct 4 values in R: |17, R|

* Assumptions
* Values of A are uniformly distributed in R

* Values of v in Q are uniformly distributed over all
R. A values

R
ol = | l/\TTA/\’\
* Selectivity factor of (A =v)is '/ z

Conjunctive predicates

® Q: Op=un B:vR
* Additional assumptions
* (A =u)and (B = v) are independent
* Counterexample: major and advisor
* No “over”-selection
* Counterexample: A is the key

R _ IR
101~ ™/ st
* Reduce total size by all selectivity factors

Negated and disjunctive predicates

* Q: UA¢L7R
< 1QI = IRl (1 = Y ,r)
* Selectivity factor of =p is (1 — selectivity factor of p)
* Q:04=yvp=vR

1Q1 = IRl (Y prt + Yimpr1)2

* No! Tuples satisfying (A = u) and (B = v) are counted twice

)| ~ 1 1 1
* |Ql = |R| (/\ﬂ,\l\’\+ /\nBI€\7 /‘TT,'lRHTTb’I‘)‘)
* Inclusion-exclusion principle

Range predicates

® Q: UA>L7R
* Not enough information!
* Just pick, say, |0| ~ |R|- /5
* With more information
* Largest R.A value: high(R. 4)
* Smallest R.A value: low(R. A)

high(R.A)-v
: ‘Ql = ‘Rl ‘ high(R.A)-low(R.A)
* In practice: sometimes the second highest and lowest
are used instead
* The highest and the lowest are often used by inexperienced
database designer to represent invalid values!

4/9/19

Two-way equi-join

. Q:
* Assumption:

* Every tuple in the “smaller” relation (one with fewer
distinct values for the join attribute) joins with some
tuple in the other relation

* Thatis, if [Ty R| < |m4S| then m4R € myS

* Certainly not true in general

* But holds in the common case of foreign key joins

* Selectivity factorof R.A = S.Ais

Multiway equi-join

< Q:
* What is the number of distinct C values in the join
of Rand §?

* Assumption:
* A non+join attribute does not lose values from its set of
possible values
* Thatis, if Aisin R but not S, then 4 (R @ §) = myR
* Certainly not true in general
* But holds in the common case of foreign key joins (for
value sets from the referencing table)

Multiway equi-join (cont’d)

. Q:
* Start with the product of relation sizes
* IR[-IS]-1T]
* Reduce the total size by the selectivity factor of
each join predicate
*R.B=S.B:
*S.C=T.C:

Cost estimation: summary

* Using similar ideas, we can estimate the size of
projection, duplicate elimination, union, difference,
aggregation (with grouping)

* Lots of assumptions and very rough estimation

* Accurate estimate is not needed

* Maybe okay if we overestimate or underestimate
consistently

* May lead to very nasty optimizer “hints”

SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9

* Not covered: better estimation using

Search strategy

hitp://1.bp.blogspot. d TayAidkiSQU KE/miseifZssTt

Search space 9
* Huge! N/ \N
* “Bushy” plan example: / \ / \N
R, Ry Rs
Rf/\\ks

* Just considering different join orders, there are
bushy plans for Ry > -« M R,
* 30240 forn =16

* And there are more if we consider:
* Multiway joins
* Different join methods
* Placement of selection and projection operators

4/9/19

Left-deep plans

~
o g
Ry
X g
S~ 3
2 Rl

* Heuristic: consider only “ ” plans, in which
only the left child can be a join
* Tend to be better than plans of other shapes, because many
join algorithms scan inner (right) relation multiple times—
you will not want it to be a complex subtree

* How many left-deep plans are there for Ry ™ -+ M R,,?
» Significantly fewer, but still lots— n! (720 for n = 6)

A greedy algorithm

* S, Sn
* Say selections have been pushed down; i.e., S; = a,,(R;)

* Start with the pair §;, S; with the smallest estimated
size for §; x4 S;

* Repeat until no relation is left:
Pick Sy from the remaining relations such that the join
of Sy and the current result yields an intermediate
result of the smallest size

[...,Sk,Sl,Sm,...

Selinger’s algorithm: A dynamic
programming approach

Optimal for “whole” made up from
optimal for “parts”

Principle of Optimality

Query: R1p><t R2><d R3 D><I R4 >0 R5

/><><\
A

R3 Suppose,
this is an Optimal Plan
for joining R1...R5:

Principle of Optimality

Query: R1p><t R2>< R3 D><I R4 >0 R5

Then, what can you say /)><\
about this sub-plan? /><\ < R5

7><\ R4 ."
K¢ R4

,." R3 R2 . Suppose,

SemmemegmT i this is an Optimal Plan
This has to be tHe for joining R1...R5:
optlmal plan for]omlng R3 R2, R4, R1

Duke CS, Fal ci 516: Datal

Principle of Optimality

Query: R1p><t R2><d R3 D><I R4 >0 R5

Then, what can you say /><\

about this sub-plan? //><\

We are using the ./'f<\'\, R1

associativity and R4 N

commutativity of joins . .

(RIS)T= RM(SMT) /.’

R>IS=SPIR 2R3 R2 Suppose,
ooy - this is an Optimal Plan

for joining R1...R5:

This has to be tHe
optimal plan for joining R3, R2, R4

Exploiting Principle of
Optimality
Query: R1><1 R21>< > Rn

Both are giving the same result
R2 DI R3 D<I R1 = R3 < R1 1< R2

/x\ R1 /><\ R2

R2 R3 | R3 R1

Optimal Sub-Optimal
for joining R1, R2, R3 for joining R1, R2, R3

Duke CS, Fall 201¢ CompSci 516: Database S»

Selinger Algorithm:

OPT ({R1,R2,R3}):

OPT ({R1,R2}) + cost-to-join ({R1, R2}, {R3})

Min OPT({R2,R3}) + cost-to-join ({R2, R3}, {R1})

OPT ({R1,R3}) + cost-tooin ({R1, R3}, {R2})

Selinger Algorithm:

Query: R1><t R2><1 R3 B><I R4

Progress
of
{R1, R2, R3, R4} algorithm

{R1,R2/R3} {R1,R2,R4} {R1,R3 R4} {R2 R3, R4}
{R1,R2} {R1,R3} {R1,R4} {R2 R3} {RZ R4} {R3, R4}

{R1} {R2} {R3} {R4}

Selinger Algorithm:

Query: R1><t R2><1 R3 B><I R4

Progress
of
{R1, R2, R3, R4} algorithm

{R1,R2/R3} {R1,R2,R4} {R1,R3 R4} {R2 R3, R4}

{R1,R2} {R1,R3} {R1,R4} {R2 R3} {RZ R4} {R3, R4}

{R1} {R2} {R3} {R4}

Selinger Algorithm:

Query: R1><t R2><1 R3 B><I R4

e.g. All possible permutations of R1, R3, R4
have been considered Prog ress
after OPT({R1, R3, R4}) has been computed of
{R1, R2, R3, R4} algorithm

{R1,R2/R3} {R1,R2,R4} {R1,R3 R4} {R2 R3, R4}

{R1,R2} {R1,R3} {R1,R4} {R2 R3} {RZ R4} {R3, R4}

{R1} {R2} {R3} {R4}

CompScis 6: Database Systems

Selinger Algorithm:

Query: R1D><t R2><1 R3 B><I R4

Q. How to optimally compute join of {R1, R2, R3, R4}?

Progress
Ans: First optimally join {R1, R3, R4} then join with R2 as inner. of
{R1,R2,R3,R4} algorithm

{R1,R2/R3} {R1,R2,R4} {R1,R3 R4} {R2 R3, R4}
{R1,R2} {R1,R3} {R1,R4} {R2 R3} {RZ R4} {R3, R4}

{R1} {R2} {R3} {R4}

4/9/19

4/9/19

Selinger Algorithm: Selinger Algorithm:
Query: R1D><1 R2D><1 R3 D><I R4 Query: R1D>< R2D><1 R3 D><I R4
Q. How to optimally compute join of {R1, R3, R4}? Q. How to optimally compute join of {R1, R3}2
Progress Progress
Ans: First optimally join {R1, R3}, then join with R4 as inner. of Ans: First optimally join {R3}, then join with R1 as inner. of
{R1,R2, R3, R4} algorithm {R1,R2, R3, R4} algorithm
{R1,R2,R3} {R1,R2,R4} {R1,R3,R4} {R2, R3 R4} {R1,R2,R3} {R1,R2,R4} {R1,R3,R4} {R2, R3 R4}
{R1,R2} {R1,R3} {R1,R4} {R2,R3} {R2,R4} {R3 R4} {R1,R2} {R1,R3} {R1,R4} {R2,R3} {R2,R4} {R3 R4}
{R1} {R2} {R3} {R4} {R1} {R2} {R3} {R4}
Selinger Algorithm: Selinger Algorithm:|
Query: R1><t R2><1 R3 B><I R4 Query: R1><t R2><1 R3 B><I R4
Q. How to optimally compute join of {R3}?
Progress
Ans: Single relation - so optimally scan R3. of
{R1,R2, R3, R4} algorithm Final optimal plan:
R2
{R1,R2,R3} {R1,R2,R4} {R1,R3,R4} {R2, R3 R4} /><\ R4

R3 R1
{R1,R2} {R1,R3} {R1,R4} {R2 R3} {RZ R4} {R3, R4}

NOTE : There is a one-one correspondence between the permutation (R3, R1, R4, R2)
and the above left deep plan

{R1} {R2} {R3} {R4}

Duke CS, Fall 2018 Compsci 516: Database Systems

The need for “interesting order” Dealing with interesting orders
* Optimal plan may not have an optimal sub-planiin When picking the best plan
practice! « Comparing their costs is not enough
* Example: R(4,B) x S(4,C) x T(A,D) * Plans are not totally ordered by cost anymore
* Best plan for R ™ S: hash join (beats sort-merge join) » Comparing interesting orders is also needed
* Best overall plan: sort-merge join R and S, and then * Plans are now partially ordered
sort-merge join with T * Plan X is better than plan Y if

* Cost of X is lower than Y, and

* Subplan of the optimal plan is not optimal! !
* Interesting orders produced by X “subsume” those produced by Y
. ?
Whyr; It of th inof Rand S don A * Need to keep a set of optimal plans for joining every

Tl e resu t of the sort-merge join of R and S is sorted on combination of k tables

* Thisis an that can be exploited by later * At most one for each interesting order
processing (e.g., join, dup elimination, GROUP BY, g
ORDER BY, etc.)!

Summary

* Relational algebra equivalence
* SQL rewrite tricks
* Heuristics-based optimization

* Cost-based optimization
* Need statistics to estimate sizes of intermediate results
* Greedy approach
* Dynamic programming approach

Practice problem:
Estimating the cost of the entire plan

S(sid,name,age,addr) no. of tuples no. of pages V(B,author) = 50U}
ST 4 " _ - 7 <=age <=24
B(bid,title,author) 33) ;g-ggg :Eg[;‘ggg
C(sid.bid,date) T:C));SOIO‘OOO B 15,000 V(B_,author)_: 500)
. 7 <=age <= 24
Physical Query Plan
(©nthefly) (9) I name Q. Compute

1. the cost and cardinality in
steps (a) to (g)
2. the total cost

(On the fly) Ho 12<age<20

(Block nested loop

S inner) a ® Assumptlons (given):
Unclustered B+tree
(d) HS“{&) index on B.author
« Clustered B+tree index
(Indexed-nested loop, on C.bid
B outer, Cinner) [>< (¢ « Allindex pages are in
bid memory

©nthe fly) (b) [T g + Unlimited memory

|
(8) S author = ‘Olden Fames' Checkout C St.Udent S
Book B (Index scan) (File scan)

s c{Index scan)

CompSci 516: Database Systems

S(sid,name,age,addr) T(S)=10,000 V(B,author) = 500°

B(bid,title,author): Un. B+ on author T(B)=50,000 X 7 <= age <= 24
C(sid.bid,date): CI. B+ on bid T(C)=300,000 B(C)=15,000
©onthefly) (@) ITname (a)
Cost =
©nthey) (f) GWWNO T(B) / V(B, author)
=50,000/500

(Block nested IOop =100 (unclustered)

S inner)
Cardinality =
(d) T gig©On the fly) 100

(Indexed-nested loop,
B outer, C inner)

>< (©) Student S
(File scan)
(On the fly) (b)l‘_[b\d
(a) G author = oenFares Checkout C
Book B (Index scan)

(Index scan)

Duke CS, Fall 2018 CompSci 516: Database Systems

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000
B(bid,title,author): Un. B+ on author T(B)=50,000 B(B)=5,000
C(sid.bid,date): CI. B+ on bid T(C)=300,000 B(C)=15,000

©nthefly) (9) I name (b)

(On the fiy) Ho 12<age<20

V(B,author) = 500
7<=age<=24

Cost =
0 (on the fly)

(Block nested Ioop Cardinality =

S inner) / 100
(d) I ig©On the ly)

(Indexed-nested loop,
B outer, C inner)

>< (©) Student S
(File scan)
©nthefly) (b) I"I bid
() © author = ‘OITen rames Checkout C
Book B (Index scan)

(Index scan)

Duke all 2018 CompSci 516: Database Systems

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000
B(bid,title,author): Un. B+ on author T(B)=50,000 B(B)=5,000
C(sid.bid,date): CI. B+ on bid T(C)=300,000 B(C)=15,000

V(B,author) = 500°
7<=age<=24

« one index lookup per outer B
©onthefly) (@) ITname (C) pp

tuple
» 1 book has T(C)/ T(B) =6
e B s b
(Block nested Ioop T(C)B(C) = 20

S inner) + 6 tuples fit in at most 2
consecutive pages (clustered)
(d) T gig©On the fly) could assume 1 page as well

Cost <=
100 * 2= 200

(Indexed-nested loop,
B outer, C inner)

|> ~<J © Student S o

(Fl|e scan) Cardinality =
(On the fly) (b)l—[md 100 * 6 = 600
|

(a) G autor = ‘oien Fames Checkout C =100 * T(C)/ MAX(100, V(C, bid))

‘ assuming
Book g (Index scan) V(C, bid) = V(B, bid) = T(B) =
(Index scan) 50,000

Duke CS, Fall 2018 CompSci 516: Database Systems

4/9/19

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000
B(bid,title,author): Un. B+ on author T(B)=50,000 B(B)=5,000
C(sid.bid,date): CI. B+ on bid T(C)=300,000 B(C)=15,000

V(B,author) = 500°
7 <=age<=24

S(sid,name,age,addr)

C(sid,bid,date): Cl. B+ on bid

T(S)=10,000 B(S)
B(bid,title,author): Un. B+ on author T(B)=50,000 B(B)

7<=age<=24
T(C)=300,000 B(C)= 15 000

V(B,author) = 500°

©nthefly) (9) I name (d)

(On the fiy) (f) 5 12< ge<20

(Block nested Ioop

Sinner) /
(d) I gigOn the ly)

(Indexed-nested loop,
B outer, C inner)

>< ©
(File scan

©nthely) (b) H bid
|

(8) © author = ‘Olden Fames’

[
Book B
(Index scan)

Duke CS, Fall 2018 CompSci 516: Databa

Checkout C
(Index scan)

Cost =
0 (on the fly)

Cardinality =
600

Student S)

©nthefly) (9) I name (e)

(Onthe fiy) () 0 12« ge<20

(Block nested Ioop

Boch B (Index scan)

(Index scan)

Duke CS, Fall 2018 CompsSci 516: Databa

Outer relation is already in
(unlimited) memory
need to scan S relation

S inner) / Cost =
(d) I gigOn the fy) B(S) = 1000
(Indexed-nested loop, Cardinality =
B outer, C inner) >< (© Student S 600
(File scan) (one student per checkout)
©nthely) (b) I‘T bid
(@) G autor = ‘oien Fames Checkout C

S(sid,name,age,addr) T(S)=10,000
B(bid,title,author): Un. B+ on author T(B)=50,000
C(sid.bid,date): CI. B+ on bid T(C)=300,000

©nthefly) (Q) ITname (f)

(On the fiy) Ho 12<age<20

(Block nested Ioop

S inner) /
(d) I ig©On the fly)

(Indexed-nested loop,
B outer, C inner)

>< (© Student S
(File scan)

©nthefly) (b) |—[bid
|

(8) © author = ‘Olden Fames'

[
Book B
(Index scan)

Checkout C
(Index scan)

Duke all 2018 CompSci 516: Database Syste

B(S)=1,000 V(B,author) = 500"
B(B)=5,000 7 <= age <= 24
B(C)=15,000

Cost =

0 (on the fly)

Cardinality =
600 * 7/18 = 234 (approx)

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author T(B)=50,000
C(sid.bid,date): Cl. B+ on bid

(©nthefly) (9) I name (g)

(On the fiy) o 12<age<20

(Block nested Ioop

S inner) /
(d) T gig©On the fly)
(Indexed-nested loop,

B outer, C inner) >< (© Student S
(File scan)

©nthefly) (b) 1—[bid
|

(8) © author = ‘Olden Fames'

[
Book B
(Index scan)

Checkout C
(Index scan)

Duke CS, Fall 2018 CompSci 516: Database Systems

T(S)=10,000 V(B,author) = 500°
) 7 <= age <= 24
T(C)=300,000 B(C)=15,000
Cost =
0 (on the fly)
Cardinality =
234

S(sid,name,age,addr) T(S)=10,000
B(bid,title,author): Un. B+ on author T(B)=50,000
C(sid.bid,date): CI. B+ on bid T(C)=300,000

©nthefly) (9) I pame (tOtaI)

(On the fiy) Ho 12<age<20

(Block nested Ioop

S inner) /
(d) I ig©On the ly)

(Indexed-nested loop,
B outer, C inner)

>< (© Student S
(File scan)

©nthefly) (b) |—[bid
|

(8) © author = ‘Olden Fames'

[
Book B
(Index scan)

Checkout C
(Index scan)

Duke all 2018 CompSci 516: Database Syste

B(S)=1,000 V(B,author) = 500°
B(B)=5,000 7 <= age <= 24
B(C)=15,000

Total cost =
1300

Final cardinality =
234 (approx)

4/9/19

