Query Optimization

Introduction to Databases
CompSci 316 Spring 2019

COMPUTER SCIENCE

Announcements (Thu., Apr. 9)

* Friday 04/12: HW4-problem 1 due (gradiance)
* Monday 04/15: Hw4-problem 3 due (gradescope)

Query optimization

* Questions
* How to enumerate possible plans
* How to estimate costs
* How to pick the “best” one

* Often the goal is not getting the optimum plan, but
instead avoiding the horrible ones

/ Any of these will do

—+ - — —

1second 1 minute 1 hour

Plan enumeration in relational algebra

* Apply relational algebra equivalences

%~ Join reordering: X and X are associative and
commutative (except column ordering, but that is
unimportant)

/\ /\ /\,
/N /\ /N

More relational algebra equivalences

* Convert g;,-X to/from x;:
* Merge/split o’s:
* Merge/split ’s: ,whereL; € L,

* Push down/pull up o:
, where

* p, is a predicate involving only R columns
* Dy is a predicate involving only S columns
* pand p’ are predicates involving both R and S columns

e Push down m: , where
L' is the set of columns referenced by p that are not in L

* Many more (seemingly trivial) equivalences...
* Can be systematically used to transform a plan to new ones

Relational query rewrite example

7|-[Group.name

OI-User.name:“Bart” A User.uid = Member.uid A Member.gid = Group.gid

X
7 N

X
PN Group

User Member T[Group name

O-I\/lember gid = Group.gid

Grou
/ P T[Group name

O-User.u:d Member.uid

>|< - \I\/lember gid = Group.gid
Member / Group
O-name = “Bart” {ser uid = Member.uid
U;er Member

Io-name = “Bart”’

User

Heuristics-based query optimization

* Start with a logical plan

* Why? Reduce the size of intermediate results
* Why not? May be expensive; maybe joins filter better

* Why? Reduce the size of intermediate results
* Why not? Size depends on join selectivity too

* Convert the transformed logical plan to a physical
plan (by choosing appropriate physical operators)

SQL query rewrite

* More complicated—subqueries and views divide a
query into nested “blocks”

* Processing each block separately forces particular join
methods and join order

* Even if the planis optimal for each block, it may not be
optimal for the entire query

* Unnest query: convert subqueries/views to joins

®We can just deal with select-project-join queries
* Where the clean rules of relational algebra apply

SQL query rewrite example

e SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

« SELECT name
FROM User, Member
WHERE User.uid = Member.uid;

* Wrong—-consider two Bart’s, each joining two groups

* SELECT name
FROM (SELECT DISTINCT User.uid, name
FROM User, Member
WHERE User.uid = Member.uid);

* Right—assuming User.uid is a key

Dealing with correlated subqueries

 SELECT gid FROM
WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member
WHERE Member.gid =);

 SELECT gid
FROM Group, (SELECT gid, COUNT(*) AS cnt
FROM Member GROUP BY gid) t
WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield%';

* New subquery is inefficient (it computes the size for
every group)

* Suppose a group is empty?

“Magic” decorrelation

SELECT gid FROM

WHERE name LIKE 'Springfield%'

AND min_size > (SELECT COUNT(*) FROM Member
WHERE Member.gid =);

WITH AS
(SELECT * FROM Group WHERE name LIKE 'Springfield%'"),

AS
(SELECT DISTINCT gid FROM Supp_ Group),

AS
((SELECT Group.gid, COUNT(*) AS cnt
FROM Magic, Member WHERE Magic.gid = Member.gid
GROUP BY Member.gid) UNION
(SELECT gid, 0 AS cnt
FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp Group.gid FROM Supp Group, DS
WHERE Supp Group.gid = DS.gid
AND min_size > DS.cnt;

Heuristics- vs. cost-based optimization

* Apply heuristics to rewrite plans into cheaper ones

logical plan to combine “blocks” as much as
possible

query block by block
* Enumerate logical plans (already covered)

» Estimate the cost of plans
* Pick a plan with acceptable cost

* Focus: select-project-join blocks

Cost estimation

PROJECT (Group.title)

|
MERGE-JOIN (gid)
N

Physical plan example:

SOR/T/(gid) SCAN (Group)
Input to SORT(gid): MERGE JOIN (yid)
FILTER (name = “Bart”) SOR_QUId)
SCAN (Member)

I
SCAN (User)

* We have: cost estimation for each operator
« Example: SORT(gid) takes O (B (input)Xxlog,, B(input))
* But what is B(input)?

 We need:

Cardinality estimation

http://www.learningresources.com/product/estimation+station.do

Selections with equality predicates

[] Q:
* Suppose the following information is available

e Size of R:
e Number of distinct 4 values in R:

* Assumptions
* Values of A are uniformly distributed in R

* Values of v in Q are uniformly distributed over all
R. A values

e Selectivity factor of (A = v) is

Conjunctive predicates

o Q:
* Additional assumptions
* (A =u)and (B = v) are independent
* Counterexample: major and advisor
* No “over”-selection
* Counterexample: A is the key

* Reduce total size by all selectivity factors

Negated and disjunctive predicates

. Q:

* Selectivity factor of —p is (1 — selectivity factor of p)

o Q:
. ~ (1 1

Q1 ~ IRI - (% ur + */srl)7

* No! Tuples satisfying (A = u) and (B = v) are counted twice

* Inclusion-exclusion principle

Range predicates

o Q:

* Not enough information!
* Just pick, say,

* With more information

* Largest R.A value:
e Smallest R.A value:

* In practice: sometimes the highest and lowest
are used instead

* The highest and the lowest are often used by inexperienced
database designer to represent invalid values!

Two-way equi-join

° Q:
* Assumption:

* Every tuple in the “smaller” relation (one with fewer
distinct values for the join attribute) joins with some
tuple in the other relation

* Thatis, if |m4R| < |msS| then myR C m,S
* Certainly not true in general
* But holds in the common case of foreign key joins

* Selectivity factorof R.A = S.Ais

Multiway equi-join

[] Q:
* What is the number of distinct C values in the join
of R and §?

* Assumption:
* A non-join attribute does not lose values from its set of
possible values
* Thatis, if Aisin R but not S, thenm (R ™ S) = m4R
* Certainly not true in general

* But holds in the common case of foreign key joins (for
value sets from the referencing table)

Multiway equi-join (cont’d)

. Q:
» Start with the product of relation sizes
* [R|-|S]-|T]
* Reduce the total size by the selectivity factor of
each join predicate
* R.B=S.B:
e 5.C=T.C:

Cost estimation: summary

* Using similar ideas, we can estimate the size of
projection, duplicate elimination, union, difference,
aggregation (with grouping)

* Lots of assumptions and very rough estimation

e Accurate estimate is not needed

* Maybe okay if we overestimate or underestimate
consistently

* May lead to very nasty optimizer “hints”

SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9

* Not covered: better estimation using

Search strategy

http://1.bp.blogspot.com/-Motdu8reRKs/TgyAidkiSQI/AAAAAAAAAKE/mMi8ejfZ8S7U/s1600/cornMaze.jpg

Search space >
* Huge! M/ \M
» “Bushy” plan example: / \ / \[x]
R, Ry R3
R4,/ \R5

* Just considering different join orders, there are
bushy plans for R{ ™ --- ¥ R,

e 30240 forn =6

* And there are more if we consider:
* Multiway joins
* Different join methods
* Placement of selection and projection operators

Left-deep plans

X
Dd/ \
N -
= K
o R
~— 3
R; R,
* Heuristic: consider only “ ” plans, in which

only the left child can be a join
* Tend to be better than plans of other shapes, because many
join algorithms scan inner (right) relation multiple times—
you will not want it to be a complex subtree
* How many left-deep plans are there for R;{ ™ --- X R,;?
» Significantly fewer, but still lots— 1! (720 forn = 6)

A greedy algorithm

« S, .., S,

* Say selections have been pushed down;i.e., S; = 0, (R;)

* Start with the pair §;, §; with the smallest estimated
size for §; ™ §;

* Repeat until no relation is left:
Pick S}, from the remaining relations such that the join
of S; and the current result yields an intermediate
result of the smallest size

4 ...,Sk,Sl,Sm,
7 N\
Sk

Selinger’s algorithm: A dynamic
programming approach

Optimal for “whole” made up from
optimal for “parts”

Principle of Optimality

Query: R1D<1 R2D><1 R3 D<I R4 B><I R5

R3 R2 Suppose,
this is an Optimal Plan
for joining R1...R3:

Principle of Optimality

Query: R1D<1 R2D><1 R3 DI R4 <1 R5

Then, what can you say e 2)\><\
about this sub-plan? a /><\\'\.\R5

7 R3 R2 . Suppose,
| this is an Optimal Plan

This has to be thie for jOining R1...R5:
optimal plan for joining R3, R2, R4, R1

Principle of Optimality

Query: R1D<1 R2D><1 R3 D<I R4 B><I R5

Then, what can you say

about this sub-plan? .,~"/><\ R5

We are using the
associativity and
commutativity of joins

/><\ R4 2
(RBIS)MT=RBA(ST) " !

RD<IS=SB<R /" R3 R2

This has to be the

Suppose,
this is an Optimal Plan
for joining R1...R3:

optimal plan for joining R3, R2, R4

Exploiting Principle of
Optimality

Query: R1 D> R2 D> ><1 Rn

Both are giving the same result
R2 D1 R3 P<I R1 = R3 <1 R1 X< R2

/><\ R1 /X\ R2

R2 R3 R3 R1

Optimal Sub-Optimal
for joining R1, R2, R3 ~ forjoining R1, R2, R3

Selinger Algorithm:

OPT ({R1,R2, R3}):
" OPT ({R1,R2}) + cost-to-join ({R1, R2}, {R3})

Min < OPT ({R2,R3}) + cost-to-join ({R2, R3}, {R1})

\OPT ({R1,R3}) + cost-to-join ({R1, R3}, {R2})

Selinger Algorithm:

Query: R1D<1 R2D><1 R3 ><1 R4

Progress
of
{R1, R2, R3, R4} algorithm

[R1,R2,R3} {R1,R2,R4} {R1,R3, R4} {R2 R3, R4}

[R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

bk

{R1} {R2} { R3} {R4}

Selinger Algorithm:

Query: R1D<1 R2D><1 R3 ><1 R4

Progress
of
{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3, R4} {R2 R3 R4}

f{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

DN el

{R1} {R2} { R3} {R4}

Selinger Algorithm;

Query: R1D<1 R2D><1 R3 ><1 R4

e.g. All possible permutations of R1, R3, R4
have been considered Progress
after OPT({R1, R3, R4}) has been computed of

{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3, R4} {R2 R3 R4}

f{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

DN el

{R1} {R2} { R3} {R4}

Selinger Algorithm:

Query: R1D<1 R2D><1 R3 ><1 R4

Q. How to optimally compute join of {R1, R2, R3, R4}

Progress
Ans: First optimally join {R1, R3, R4} then join with R2 as inner. of
{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3, R4} {R2 R3 R4}

f{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

DN el

{R1} {R2} { R3} {R4}

Selinger Algorithm:

Query: R1D<1 R2D><1 R3 ><1 R4

Q. How to optimally compute join of {R1, R3, R4}

Progress
Ans: First optimally join {R1, R3}, then join with R4 as inner. of
{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3,R4} {R2 R3, R4}

f{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

DN el

{R1} {R2} { R3} {R4}

Selinger Algorithm:

Query: R1D<1 R2D><1 R3 ><1 R4

Q. How to optimally compute join of {R1, R3}?

Progress
Ans: First optimally join {R3}, then join with R1 as inner. of
{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3 R4} {R2 R3, R4}

[{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2, R4} {R3, R4}

DN el

{R1} {R2} { R3} {R4}

Selinger Algorithm:

Query: R1D<1 R2D><1 R3 ><1 R4

Q. How to optimally compute join of {R3}? 1
Progress

Ans: Single relation — so optimally scan R3. of
{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3 R4} {R2 R3, R4}

f{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

DN el

{R1} {R2} {R3} {R4}

Selinger Algorithm:

Query: R1D><1 R2><1 R3 ><l R4

R3 R1

NOTE : There is a one-one correspondence between the permutation (R3, R1, R4, R2)
and the above left deep plan

The need for “interesting order”

* Optimal plan may not have an optimal sub-plan in
practice!

« Example: R(A,B) @ S(A,C) x T(A,D)
* Best plan for R ™ S: hash join (beats sort-merge join)

* Best overall plan: sort-merge join R and S, and then
sort-merge join with T
* Subplan of the optimal plan is not optimal!

* Why?
* The result of the sort-merge join of R and S is sorted on A
* Thisis an that can be exploited by later

processing (e.g., join, dup elimination, GROUP BY,
ORDER BY, etc.)!

Dealing with interesting orders

When picking the best plan

* Comparing their costs is not enough
* Plans are not totally ordered by cost anymore

* Comparing interesting orders is also needed
* Plans are now partially ordered

* Plan X is better than plan Y if
e Costof X islowerthanY, and
* Interesting orders produced by X “subsume” those produced by Y

* Need to keep a set of optimal plans for joining every
combination of k tables

* At most one for each interesting order

Summary

* Relational algebra equivalence
* SQL rewrite tricks
* Heuristics-based optimization

* Cost-based optimization
* Need statistics to estimate sizes of intermediate results
* Greedy approach
* Dynamic programming approach

Practice problem:
Estimating the cost of the entire plan

S(ﬂ’name,age’addr) no. Of tuples no. Of pages V(B,author) = 500

B(bid, title,author) Te-1 8888 B(5)=1.000 7 <=age <= 24
C(sid,bid,date) () 1=300,000 B(C)=15,000 V(B,author) = 500
/ <=age <=24
Physical Query Plan
(on the fly) (9) I name Q. Compute
1. the cost and cardinality in
Enthet) (£ ol steps (a) to (g)

2. the total cost

(Block nested loop—L— (g

S inner) @ Assumptions (given):
. Unclustered B+tree
(d) IT i (On the fly) index on B.author
. Clustered B+tree index
(Indexed-nested loop, ' on C.bid
B outer, C inner) N ©) « Allindex pages are in
/ memory
(On the fly) () TT . Unlimited memory
(a) G author = ‘Olc|len Fames’ CheCkOUt C StUdent S
Book B (Index scan) (File scan)

(Index scan)

S(sid,name,age,addr) T(5)=10,000 B(S)=1,000 V(B,author) = 500
B(bidtitle,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24

C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000
©nthefly) (9) I ame (a)
Cost =
(On the fly) (f) G 12<hge<20 T(B) / V(B, author)
= 50,000/500
(Block nested loop—. =100 (unclustered)

(e)
S inner)
Cardinality =
(d) IT ;(On the fly) 100

(Indexed-nested loop,

B outer, C inner) N (© Student S

(File scan)
(On the fly) (b) H bid

(a) G author = ‘OI<|jen Fames’ CheCkOUt C
Book B (Index scan)

(Index scan)

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000

V(B,author) = 500
[/ <=age<=24

B(bid title,author): Un. B+ on author T(B)=50,000 B(B)=5,000
C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000
©nthefly) (9) I ame (b)
Cost =
Onthe) (f) 6 1a<hge<zo 0 (on the fly)

(Block nested Ioop Cardinality =

(e)
S inner) / 100
(d) H3|d On the fly)

(Indexed-nested loop,

B outer, C inner) = (© Student S

/b‘d\ (File scan)

(On the fly) (b) I bid
|

(a) G author = ‘OI<|jen Fames’ CheCkOUt C
Book B (Index scan)

(Index scan)

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000
B(bid title,author): Un. B+ on author T(B)=50,000 B(B)=5,000
C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000

V(B,author) = 500
[/ <=age<=24

©nthefly) (9) I ame (C)

(On the fly) (f) o 12<age<20

(Block nested loop—.

(e)
S inner) /
(d) IT 4 (©On the fly)

(Indexed-nested loop,
B outer, C inner)

= (0

/ bid

(On the fly) (b) I bid
|

Student S
(File scan)

Checkout C
(Index scan)

(a) G author = ‘Olden Fames'’

|
Book B
(Index scan)

« one index lookup per outer B
tuple

« 1book has T(C)/ T(B) =6
checkouts (uniformity)

« # C tuples per page =
T(C)/B(C) =

« 6 tuples fit in at most 2
consecutive pages (clustered)
could assume 1 page as well

Cost <=

100 * 2= 200

Cardinality =
100 * 6 = 600

=100 * T(C)/ MAX(100, V(C, bid))
assuming

V(C, bid) = V(B, bid) = T(B) =

50,000

S(sid,name,age,addr) T(5)=10,000 B(S)=1,000 V(B,author) = 500
B(bidtitle,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24

C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000
©nthefly) (9) I ame (d)
(On the fly) o 12<bge<20 Cost =

(Block nested loop—. 0 (on the fly)

(€)
> Inner) / Cardinality =
(d) IT ;4 (©n the fly) 600

(Indexed-nested loop,

B outer, C inner) N (© Student S

(File scan)
(On the fly) (b) 1|‘[bid

(a) G author = ‘OI<|jen Fames’ CheCkOUt C
Book B (Index scan)

(Index scan)

S(sid,name,age,addr) T(5)=10,000 B(S)=1,000 V(B,author) = 500
B(bid, title,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24
C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000

©nthefly) (9) I ame (e)
Outer relation is already in

©Onthe 1) (f) 5 45l geczo (unlimited) memory
need to scan S relation

(Block nested loop—.

(e)
S inner) / e
(d) IT ¢ (On the fly) B(S) = 1000

(Indexed-nested loop, Cardinality =

B outer, C inner) N © Students |69

(On the fly) (b) H bid

(a) G author = ‘OI<|jen Fames’ CheCkOUt C
Book B (Index scan)

(Index scan)

\ (File scan) (one student per checkout)

S(sid,name,age,addr) T(5)=10,000 B(S)=1,000 V(B,author) = 500
B(bidtitle,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24

C(sid.bid,date): CI. B+ on bid T(C)=300,000 B(C)=15,000
©Onthe fly) (G) I name (f)
Cost =
Ot 1) () & 45 ehgec20 0 (on the fly)

(Block nested loop—. Cardinality =

(e)
S inner) / 600 * 7/18 = 234 (approx)
(d) H3|d On the fly)

(Indexed-nested loop,

B outer, C inner) N (© Student S

(File scan)
(On the fly) (b) H bid

(a) G author = ‘OI<|jen Fames’ CheCkOUt C
Book B (Index scan)

(Index scan)

S(sid,name,age,addr) T(5)=10,000 B(S)=1,000 V(B,author) = 500
B(bidtitle,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24

C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000
©Onthefly) () IT name (g)
Cost =
Ot 1) () & 45 ehgec20 0 (on the fly)

(Block nested loop—. Cardinality =

(e)
S inner) / 234
(d) H3|d On the fly)

(Indexed-nested loop,

B outer, C inner) N (© Student S

(File scan)
(On the fly) (b) 1|‘[bid

(a) G author = ‘OI<|jen Fames’ CheCkOUt C
Book B (Index scan)

(Index scan)

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000
B(bid title,author): Un. B+ on author T(B)=50,000 B(B)=5,000
C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000

(©nthefly) (9) I name (tOta I)

Total cost =
(On the fly) (f) (0] 12<age<20 1300

V(B,author) = 500
[/ <=age<=24

(Block nested loop—.

(€) : e
S inner Final cardinality =
) / 234 (approx)
(d)HSId On the fly)

(Indexed-nested loop,

B outer, C inner) N (© Student S

(File scan)
(On the fly) (b) H bid

(a) G author = ‘OI<|jen Fames’ CheCkOUt C
Book B (Index scan)

(Index scan)

