
Query Optimization
Introduction to Databases
CompSci 316 Spring 2019



Announcements (Thu., Apr. 9)

• Friday 04/12: HW4-problem 1 due (gradiance)
• Monday 04/15: Hw4-problem 3 due (gradescope)



Query optimization

• One logical plan → “best” physical plan
• Questions

• How to enumerate possible plans
• How to estimate costs
• How to pick the “best” one

• Often the goal is not getting the optimum plan, but 
instead avoiding the horrible ones

1 second 1 hour1 minute

Any of these will do



Plan enumeration in relational algebra

• Apply relational algebra equivalences
FJoin reordering: × and ⋈ are associative and 

commutative (except column ordering, but that is 
unimportant)
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More relational algebra equivalences

• Convert 𝜎(-× to/from ⋈(: 𝜎( 𝑅×𝑆 = 𝑅 ⋈( 𝑆
• Merge/split 𝜎’s: 𝜎(* 𝜎(+𝑅 = 𝜎(*∧(+𝑅
• Merge/split 𝜋’s: 𝜋./ 𝜋.+𝑅 = 𝜋.*𝑅, where 𝐿/ ⊆ 𝐿2
• Push down/pull up 𝜎:
𝜎(∧(3∧(4 𝑅 ⋈(5 𝑆 = 𝜎(3𝑅 ⋈(∧(5 𝜎(4𝑆 , where

• 𝑝7 is a predicate involving only 𝑅 columns
• 𝑝8 is a predicate involving only 𝑆 columns
• 𝑝 and 𝑝9 are predicates involving both 𝑅 and 𝑆 columns

• Push down 𝜋: 𝜋. 𝜎(𝑅 = 𝜋. 𝜎( 𝜋..5𝑅 , where
• 𝐿9 is the set of columns referenced by 𝑝 that are not in 𝐿

• Many more (seemingly trivial) equivalences…
• Can be systematically used to transform a plan to new ones



Relational query rewrite example
𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧Member.gid = Group.gid
×

Member
Group×

User 𝜋Group.name
𝜎Member.gid = Group.gid
×

Member

Group

×

User

𝜎User.uid = Member.uid

𝜎name = “Bart”

Push down 𝜎
𝜋Group.name
⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid = Member.uid

𝜎name = “Bart”

Convert 𝜎(-× to ⋈(



Heuristics-based query optimization

• Start with a logical plan
• Push selections/projections down as much as 

possible
• Why? Reduce the size of intermediate results
• Why not? May be expensive; maybe joins filter better

• Join smaller relations first, and avoid cross product
• Why? Reduce the size of intermediate results
• Why not? Size depends on join selectivity too

• Convert the transformed logical plan to a physical 
plan (by choosing appropriate physical operators)



SQL query rewrite

• More complicated—subqueries and views divide a 
query into nested “blocks”

• Processing each block separately forces particular join 
methods and join order

• Even if the plan is optimal for each block, it may not be 
optimal for the entire query

• Unnest query: convert subqueries/views to joins
FWe can just deal with select-project-join queries

• Where the clean rules of relational algebra apply



SQL query rewrite example

• SELECT name
FROM User
WHERE uid = ANY (SELECT uid FROM Member);

• SELECT name
FROM User, Member
WHERE User.uid = Member.uid;

• Wrong—consider two Bart’s, each joining two groups

• SELECT name
FROM (SELECT DISTINCT User.uid, name

FROM User, Member
WHERE User.uid = Member.uid);

• Right—assuming User.uid is a key



Dealing with correlated subqueries
• SELECT gid FROM Group

WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);
• SELECT gid

FROM Group, (SELECT gid, COUNT(*) AS cnt
FROM Member GROUP BY gid) t

WHERE t.gid = Group.gid AND min_size > t.cnt
AND name LIKE 'Springfield%';

• New subquery is inefficient (it computes the size for 
every group)

• Suppose a group is empty?



“Magic” decorrelation
• SELECT gid FROM Group

WHERE name LIKE 'Springfield%'
AND min_size > (SELECT COUNT(*) FROM Member

WHERE Member.gid = Group.gid);
• WITH Supp_Group AS

(SELECT * FROM Group WHERE name LIKE 'Springfield%'),

Magic AS
(SELECT DISTINCT gid FROM Supp_Group),

DS AS
((SELECT Group.gid, COUNT(*) AS cnt
FROM Magic, Member WHERE Magic.gid = Member.gid
GROUP BY Member.gid) UNION

(SELECT gid, 0 AS cnt
FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp_Group.gid FROM Supp_Group, DS
WHERE Supp_Group.gid = DS.gid
AND min_size > DS.cnt;

Process the outer query without the subquery

Collect bindings

Evaluate the subquery with bindings

Finally, refine
the outer query



Heuristics- vs. cost-based optimization

• Heuristics-based optimization
• Apply heuristics to rewrite plans into cheaper ones

• Cost-based optimization
• Rewrite logical plan to combine “blocks” as much as 

possible
• Optimize query block by block

• Enumerate logical plans (already covered)
• Estimate the cost of plans
• Pick a plan with acceptable cost

• Focus: select-project-join blocks



Cost estimation

• We have: cost estimation for each operator
• Example: SORT(gid) takes 𝑂 𝐵 input ×logD 𝐵 input

• But what is 𝐵 input ?

• We need: size of intermediate results

PROJECT (Group.title)

MERGE-JOIN (gid)

SCAN (Group)SORT (gid)
MERGE-JOIN (uid)

SCAN (Member)

SORT (uid)

SCAN (User)

FILTER (name = “Bart”)

Physical plan example:

Input to SORT(gid):



http://www.learningresources.com/product/estimation+station.do

Cardinality estimation



Selections with equality predicates

• 𝑄: 𝜎FGH𝑅
• Suppose the following information is available

• Size of 𝑅: 𝑅
• Number of distinct 𝐴 values in 𝑅: 𝜋F𝑅

• Assumptions
• Values of 𝐴 are uniformly distributed in 𝑅
• Values of 𝑣 in 𝑄 are uniformly distributed over all 
𝑅. 𝐴	values

• 𝑄 ≈ N
OPNQ

• Selectivity factor of 𝐴 = 𝑣 is / OPNQ



Conjunctive predicates

• 𝑄: 𝜎FGR	∧	SGH𝑅
• Additional assumptions

• 𝐴 = 𝑢 and 𝐵 = 𝑣 are independent
• Counterexample: major and advisor

• No “over”-selection
• Counterexample: 𝐴 is the key

• 𝑄 ≈ N
OPN ⋅ OVNQ

• Reduce total size by all selectivity factors



Negated and disjunctive predicates

• 𝑄: 𝜎FWH𝑅
• 𝑄 ≈ 𝑅 ⋅ 1 − /

OPNQ
• Selectivity factor of ¬𝑝 is (1 − selectivity factor of 𝑝)

• 𝑄: 𝜎FGR	∨	SGH𝑅
• 𝑄 ≈ 𝑅 ⋅ /

OPNQ + /
OVNQ 	 ?

• No! Tuples satisfying 𝐴 = 𝑢 and 𝐵 = 𝑣 are counted twice

• 𝑄 ≈ 𝑅 ⋅ /
OPNQ + /

OVNQ − /
OPN OVNQ

• Inclusion-exclusion principle



Range predicates

• 𝑄: 𝜎F]H𝑅
• Not enough information!

• Just pick, say, 𝑄 ≈ 𝑅 ⋅ / ^⁄
• With more information

• Largest R.A value: high 𝑅. 𝐴
• Smallest R.A value: low 𝑅. 𝐴
• 𝑄 ≈ 𝑅 ⋅ bcdb N.F eH

bcdb N.F efgh N.F
• In practice: sometimes the second highest and lowest 

are used instead
• The highest and the lowest are often used by inexperienced 

database designer to represent invalid values!



Two-way equi-join

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶
• Assumption: containment of value sets

• Every tuple in the “smaller” relation (one with fewer 
distinct values for the join attribute) joins with some 
tuple in the other relation

• That is, if 𝜋F𝑅 ≤ 𝜋F𝑆 then 𝜋F𝑅 ⊆ 𝜋F𝑆
• Certainly not true in general
• But holds in the common case of foreign key joins

• 𝑄 ≈ N ⋅ l
mno OPN , OPl

• Selectivity factor of 𝑅. 𝐴 = 𝑆. 𝐴 is / mno OPN , OPlQ



Multiway equi-join

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷
• What is the number of distinct 𝐶 values in the join 

of 𝑅 and 𝑆?
• Assumption: preservation of value sets

• A non-join attribute does not lose values from its set of 
possible values

• That is, if 𝐴 is in 𝑅 but not 𝑆, then 𝜋F 𝑅 ⋈ 𝑆 = 𝜋F𝑅
• Certainly not true in general
• But holds in the common case of foreign key joins (for 

value sets from the referencing table)



Multiway equi-join (cont’d)

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷
• Start with the product of relation sizes 

• 𝑅 ⋅ 𝑆 ⋅ 𝑇
• Reduce the total size by the selectivity factor of 

each join predicate
• 𝑅. 𝐵 = 𝑆. 𝐵: / mno OVN , OVlQ
• 𝑆. 𝐶 = 𝑇. 𝐶: / mno Oql , OqrQ
• 𝑄 ≈ N ⋅ l ⋅|r|

mno OVN , OVl ⋅mno Oql , Oqr



Cost estimation: summary

• Using similar ideas, we can estimate the size of 
projection, duplicate elimination, union, difference, 
aggregation (with grouping)

• Lots of assumptions and very rough estimation
• Accurate estimate is not needed
• Maybe okay if we overestimate or underestimate 

consistently
• May lead to very nasty optimizer “hints”

SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;

• Not covered: better estimation using histograms



Search strategy

http://1.bp.blogspot.com/-Motdu8reRKs/TgyAi4ki5QI/AAAAAAAAAKE/mi8ejfZ8S7U/s1600/cornMaze.jpg



Search space

• Huge!
• “Bushy” plan example:

• Just considering different join orders, there are 
2te2 !
te/ !

bushy plans for 𝑅/ ⋈ ⋯ ⋈ 𝑅t
• 30240 for 𝑛 = 6

• And there are more if we consider:
• Multiway joins
• Different join methods
• Placement of selection and projection operators

⋈

𝑅2 𝑅/ 𝑅^
𝑅} 𝑅~

⋈ ⋈
⋈



Left-deep plans

• Heuristic: consider only “left-deep” plans, in which 
only the left child can be a join

• Tend to be better than plans of other shapes, because many 
join algorithms scan inner (right) relation multiple times—
you will not want it to be a complex subtree

• How many left-deep plans are there for 𝑅/ ⋈ ⋯ ⋈ 𝑅t?
• Significantly fewer, but still lots— 𝑛! (720 for 𝑛 = 6)

⋈

𝑅2 𝑅/
𝑅^

𝑅}

𝑅~⋈
⋈

⋈



A greedy algorithm

• 𝑆/, … , 𝑆t
• Say selections have been pushed down; i.e., 𝑆� = 𝜎( 𝑅�

• Start with the pair 𝑆�, 𝑆� with the smallest estimated 
size for 𝑆� ⋈ 𝑆�

• Repeat until no relation is left:
Pick 𝑆� from the remaining relations such that the join 
of 𝑆�	and the current result yields an intermediate 
result of the smallest size

Current subplan

… , 𝑆�, 𝑆�, 𝑆�,…
Remaining

relations
to be joined

Pick most efficient join method

⋈
𝑆�

Minimize expected size



Selinger’s algorithm: A dynamic 
programming approach

Optimal for “whole” made up from 
optimal for “parts”



Principle of Optimality

Query: R1        R2         R3         R4          R5

R3 R2

R4
R1

R5

Suppose, 
this is an Optimal Plan
for joining R1…R5:



Principle of Optimality

Query: R1        R2         R3         R4          R5

R3 R2

R4
R1

R5
Then, what can you say 
about this sub-plan?

This has to be the 
optimal plan for joining R3, R2, R4, R1

Suppose, 
this is an Optimal Plan
for joining R1…R5:



Principle of Optimality

Query: R1        R2         R3         R4          R5

R3 R2

R4
R1

R5

Suppose, 
this is an Optimal Plan
for joining R1…R5:This has to be the 

optimal plan for joining R3, R2, R4

Then, what can you say 
about this sub-plan?

We are using the
associativity and 
commutativity of joins
(R ⨝ S) ⨝ T = R ⨝ (S ⨝ T)
R ⨝ S = S ⨝ R



Exploiting Principle of 
Optimality

Query: R1        R2                …                 Rn

R3 R1

R2

R2 R3

R1

Optimal
for joining R1, R2, R3

Sub-Optimal
for joining R1, R2, R3

Both are giving the same result 
R2 ⨝ R3 ⨝ R1 = R3 ⨝ R1 ⨝ R2



OPT ( { R1, R2, R3 } ): 

OPT ( { R2, R3 } )   + cost-to-join ({R2, R3 }, {R1})

OPT ( { R1, R2 } )   + cost-to-join ({R1, R2 }, {R3})

OPT ( { R1, R3 } )   + cost-to-join ({R1, R3 }, {R2})

Min

Selinger Algorithm:



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

e.g. All possible permutations of R1, R3, R4 
have been considered

after OPT({R1, R3, R4}) has been computed



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

Q. How to optimally compute join of {R1, R2, R3, R4}?

Ans: First optimally join {R1, R3, R4} then join with R2 as inner.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

Q. How to optimally compute join of {R1, R3, R4}?

Ans: First optimally join {R1, R3}, then join with R4 as inner.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

Q. How to optimally compute join of {R1, R3}?

Ans: First optimally join {R3}, then join with R1 as inner.



Query: R1        R2         R3         R4

{ R1 } { R2 } { R3 } { R4 }

{ R1, R2 } { R1, R3 } { R1, R4 } { R2, R3 } { R2, R4 } { R3, R4 }

{ R1, R2, R3 } { R1, R2, R4 } { R1, R3, R4 } { R2, R3, R4 }

{ R1, R2, R3, R4 }

Progress
of

algorithm

Selinger Algorithm:

Q. How to optimally compute join of {R3}?

Ans: Single relation – so optimally scan R3.



R2

R3

R4

R1

Selinger Algorithm:

Final optimal plan:

Query: R1        R2         R3         R4

NOTE : There is a one-one correspondence between the permutation (R3, R1, R4, R2)
and the above left deep plan



The need for “interesting order”

• Optimal plan may not have an optimal sub-plan in 
practice!

• Example: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶 ⋈ 𝑇 𝐴, 𝐷
• Best plan for 𝑅 ⋈ 𝑆: hash join (beats sort-merge join)
• Best overall plan: sort-merge join 𝑅 and 𝑆, and then 

sort-merge join with 𝑇
• Subplan of the optimal plan is not optimal!

• Why?
• The result of the sort-merge join of 𝑅 and 𝑆 is sorted on 𝐴
• This is an interesting order that can be exploited by later 

processing (e.g., join, dup elimination, GROUP BY, 
ORDER BY, etc.)!



Dealing with interesting orders

When picking the best plan
• Comparing their costs is not enough

• Plans are not totally ordered by cost anymore

• Comparing interesting orders is also needed
• Plans are now partially ordered
• Plan 𝑋 is better than plan 𝑌 if

• Cost of 𝑋 is lower than 𝑌, and
• Interesting orders produced by 𝑋 “subsume” those produced by 𝑌

• Need to keep a set of optimal plans for joining every 
combination of 𝑘 tables

• At most one for each interesting order



Summary

• Relational algebra equivalence
• SQL rewrite tricks
• Heuristics-based optimization
• Cost-based optimization

• Need statistics to estimate sizes of intermediate results
• Greedy approach
• Dynamic programming approach



Practice problem:
Estimating the cost of the entire plan



Student SCheckout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

Physical Query Plan
Q. Compute 
1. the cost and cardinality in 

steps (a)  to (g)
2. the total cost

Assumptions (given):
• Unclustered B+tree

index on B.author
• Clustered B+tree index 

on C.bid
• All index pages are in 

memory
• Unlimited memory

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

V(B,author) = 500
7 <= age <= 24

(File scan)

no. of tuples no. of pages



Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 
T(B) / V(B, author)
= 50,000/500 
= 100  (unclustered)    

Cardinality = 
100

(a)

(File scan)



Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 
0 (on the fly)

Cardinality = 
100

(b)

(File scan)



Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

• one index lookup per outer B 
tuple

• 1 book has T(C)/ T(B) = 6 
checkouts (uniformity)

• # C tuples per page = 
T(C)/B(C) = 20

• 6 tuples fit in at most 2 
consecutive pages (clustered) 
could assume 1 page as well

Cost <= 
100 * 2= 200     

Cardinality = 
100 * 6 = 600

= 100 * T(C)/ MAX(100, V(C, bid)) 
assuming 

V(C, bid) = V(B, bid) = T(B) = 
50,000

(c)

(File scan)



Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 
0 (on the fly)

Cardinality = 
600

(d)

(File scan)



Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Outer relation is already in 
(unlimited) memory

need to scan S relation

Cost = 
B(S) = 1000 

Cardinality = 
600
(one student per checkout)

(e)

(File scan)



Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 
0 (on the fly)

Cardinality = 
600 * 7/18 = 234 (approx)

(f)

(File scan)



Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid

(On the fly)

(On the fly)

(On the fly)

(On the fly)

Cost = 
0 (on the fly)

Cardinality = 
234

(g)

(File scan)



Student S

Checkout C

bid

(Index scan)
(Index scan)

(f) s 12<age<20

(c)

B(S)=1,000
B(B)=5,000
B(C)=15,000

T(S)=10,000
T(B)=50,000
T(C)=300,000

S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

Book B

(File scan)

V(B,author) = 500
7 <= age <= 24

sid

(Block nested loop
S inner)

(e)

(g) P name

(Indexed-nested loop, 
B outer, C inner)

(a) s author = ‘Olden Fames’

(b) P bid

(d) P sid (On the fly)

(On the fly)

Total cost =
1300 

Final cardinality =
234 (approx)

(total)(On the fly)

(On the fly)


