Query Optimization

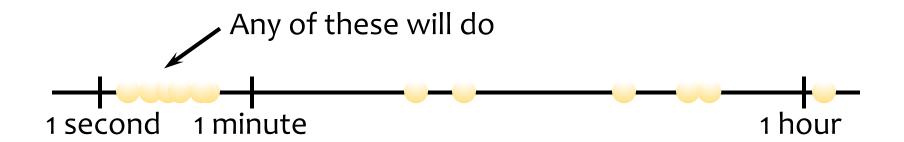
Introduction to Databases CompSci 316 Spring 2019

Announcements (Thu., Apr. 9)

- Friday 04/12: HW4-problem 1 due (gradiance)
- Monday 04/15: Hw4-problem 3 due (gradescope)

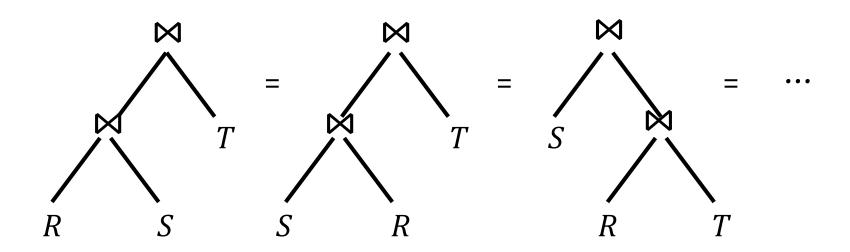
Query optimization

- One logical plan → "best" physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the "best" one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones



Plan enumeration in relational algebra

- Apply relational algebra equivalences
- Join reordering: × and ⋈ are associative and commutative (except column ordering, but that is unimportant)



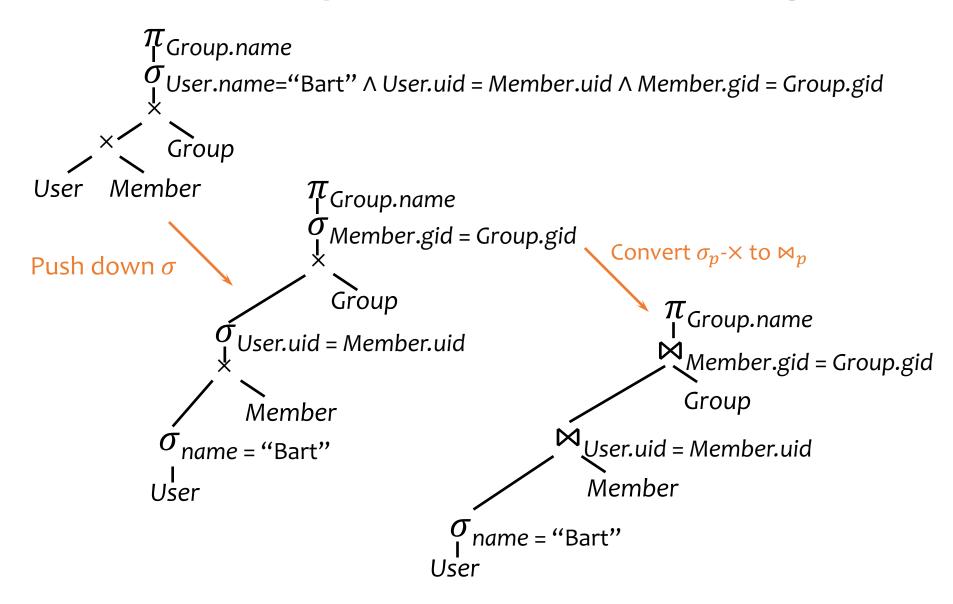
More relational algebra equivalences

- Convert σ_p -× to/from \bowtie_p : $\sigma_p(R \times S) = R \bowtie_p S$
- Merge/split σ 's: $\sigma_{p_1}(\sigma_{p_2}R) = \sigma_{p_1 \wedge p_2}R$
- Merge/split π 's: $\pi_{L_1}(\pi_{L_2}R) = \pi_{L_1}R$, where $L_1 \subseteq L_2$
- Push down/pull up σ :

$$\sigma_{p \wedge p_r \wedge p_s}(R \bowtie_{p'} S) = (\sigma_{p_r} R) \bowtie_{p \wedge p'} (\sigma_{p_s} S)$$
, where

- p_r is a predicate involving only R columns
- p_s is a predicate involving only S columns
- p and p' are predicates involving both R and S columns
- Push down π : $\pi_L(\sigma_p R) = \pi_L(\sigma_p(\pi_{LL'}R))$, where
 - L' is the set of columns referenced by p that are not in L
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example



Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why? Reduce the size of intermediate results
 - Why not? May be expensive; maybe joins filter better
- Join smaller relations first, and avoid cross product
 - Why? Reduce the size of intermediate results
 - Why not? Size depends on join selectivity too
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested "blocks"
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
- *We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM User
 WHERE uid = ANY (SELECT uid FROM Member);
- SELECT name
 FROM User, Member
 WHERE User.uid = Member.uid;
 - Wrong—consider two Bart's, each joining two groups
- SELECT name
 FROM (SELECT DISTINCT User.uid, name
 FROM User, Member
 WHERE User.uid = Member.uid);
 - Right—assuming User.uid is a key

Dealing with correlated subqueries

- SELECT gid FROM Group
 WHERE name LIKE 'Springfield%'
 AND min_size > (SELECT COUNT(*) FROM Member
 WHERE Member.gid = Group.gid);
- SELECT gid
 FROM Group, (SELECT gid, COUNT(*) AS cnt
 FROM Member GROUP BY gid) t
 WHERE t.gid = Group.gid AND min_size > t.cnt
 AND name LIKE 'Springfield%';
 - New subquery is inefficient (it computes the size for every group)
 - Suppose a group is empty?

"Magic" decorrelation

- SELECT gid FROM Group
 WHERE name LIKE 'Springfield%'
 AND min_size > (SELECT COUNT(*) FROM Member
 WHERE Member.gid = Group.gid);
- WITH Supp_Group AS Process the outer query without the subquery (SELECT * FROM Group WHERE name LIKE 'Springfield%'),

```
Magic AS Collect bindings (SELECT DISTINCT gid FROM Supp_Group),
```

DS AS Evaluate the subquery with bindings

((SELECT Group.gid, COUNT(*) AS cnt FROM Magic, Member WHERE Magic.gid = Member.gid GROUP BY Member.gid) UNION (SELECT gid, 0 AS cnt FROM Magic WHERE gid NOT IN (SELECT gid FROM Member)))

SELECT Supp_Group.gid FROM Supp_Group, DS WHERE Supp_Group.gid = DS.gid AND min_size > DS.cnt; Finally, refine the outer query

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine "blocks" as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks

Cost estimation

Physical plan example:

| PROJECT (Group.title) |
| MERGE-JOIN (gid) |
SORT (gid)	SCAN (Group)		
Input to SORT(gid):	MERGE-JOIN (uid)		
FILTER (name = "Bart")	SCAN (Member)		
SCAN (User)	MERGE-JOIN (uid)		
SCAN (User)	SCAN (Member)		
SCAN (User)	SCAN (User)	SCAN (User)	
SCAN (User)	SCAN (User)	SCAN (User)	
SCAN (User)	SCAN (User)	SCAN (User)	
SCAN (User)	SCAN (User)	SCAN (User)	
SCAN (User)	SCAN (User)	SCAN (User)	
SCAN (User)	SCAN (User)	SCAN (User)	
SCAN (User)	SCAN (User)	SCAN (User)	SCAN (User)
SCAN (User)	SC		

- We have: cost estimation for each operator
 - Example: SORT(gid) takes $O(B(input) \times log_M B(input))$
 - But what is B(input)?
- We need: size of intermediate results

Cardinality estimation

Selections with equality predicates

- $Q: \sigma_{A=v}R$
- Suppose the following information is available
 - Size of *R*: |*R*|
 - Number of distinct A values in R: $|\pi_A R|$
- Assumptions
 - Values of A are uniformly distributed in R
 - Values of v in Q are uniformly distributed over all R. A values
- $|Q| \approx \frac{|R|}{|\pi_A R|}$
 - Selectivity factor of (A = v) is $\frac{1}{|\pi_A R|}$

Conjunctive predicates

- $Q: \sigma_{A=u \land B=v}R$
- Additional assumptions
 - (A = u) and (B = v) are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: A is the key
- $|Q| \approx \frac{|R|}{|\pi_A R| \cdot |\pi_B R|}$
 - Reduce total size by all selectivity factors

Negated and disjunctive predicates

- $Q: \sigma_{A \neq v} R$
 - $|Q| \approx |R| \cdot \left(1 \frac{1}{|\pi_A R|}\right)$
 - Selectivity factor of $\neg p$ is (1 selectivity factor of p)
- $Q: \sigma_{A=u \vee B=v}R$
 - $|Q| \approx |R| \cdot (1/|\pi_{AR}| + 1/|\pi_{BR}|)$?
 - No! Tuples satisfying (A = u) and (B = v) are counted twice
 - $|Q| \approx |R| \cdot \left(\frac{1}{|\pi_A R|} + \frac{1}{|\pi_B R|} \frac{1}{|\pi_A R||\pi_B R|}\right)$
 - Inclusion-exclusion principle

Range predicates

- $Q: \sigma_{A>v}R$
- Not enough information!
 - Just pick, say, $|Q| \approx |R| \cdot \frac{1}{3}$
- With more information
 - Largest R.A value: high(R.A)
 - Smallest R.A value: low(R.A)
 - $|Q| \approx |R| \cdot \frac{\text{high}(R.A) v}{\text{high}(R.A) \text{low}(R.A)}$
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

- $Q: R(A, B) \bowtie S(A, C)$
- Assumption: containment of value sets
 - Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if $|\pi_A R| \leq |\pi_A S|$ then $\pi_A R \subseteq \pi_A S$
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- $|Q| \approx \frac{|R| \cdot |S|}{\max(|\pi_A R|, |\pi_A S|)}$
 - Selectivity factor of R.A = S.A is $\frac{1}{\max(|\pi_A R|, |\pi_A S|)}$

Multiway equi-join

- $Q: R(A,B) \bowtie S(B,C) \bowtie T(C,D)$
- What is the number of distinct *C* values in the join of *R* and *S*?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if A is in R but not S, then $\pi_A(R \bowtie S) = \pi_A R$
 - Certainly not true in general
 - But holds in the common case of foreign key joins (for value sets from the referencing table)

Multiway equi-join (cont'd)

- $Q: R(A,B) \bowtie S(B,C) \bowtie T(C,D)$
- Start with the product of relation sizes
 - $|R| \cdot |S| \cdot |T|$
- Reduce the total size by the selectivity factor of each join predicate
 - $R.B = S.B: \frac{1}{\max(|\pi_B R|, |\pi_B S|)}$
 - $S.C = T.C: \frac{1}{\max(|\pi_C S|, |\pi_C T|)}$
 - $|Q| \approx \frac{|R| \cdot |S| \cdot |T|}{\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|)}$

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer "hints"

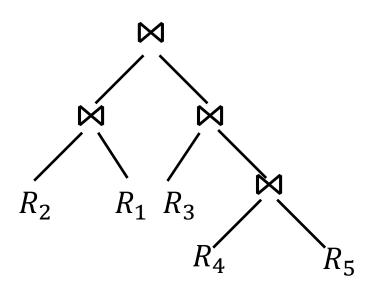
```
SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;
```

Not covered: better estimation using histograms

Search strategy

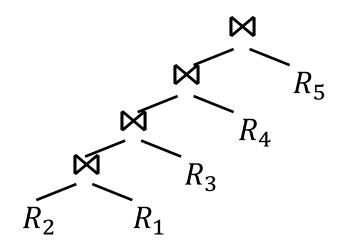
Search space

- Huge!
- "Bushy" plan example:



- Just considering different join orders, there are $\frac{(2n-2)!}{(n-1)!}$ bushy plans for $R_1\bowtie\cdots\bowtie R_n$
 - 30240 for n = 6
- And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

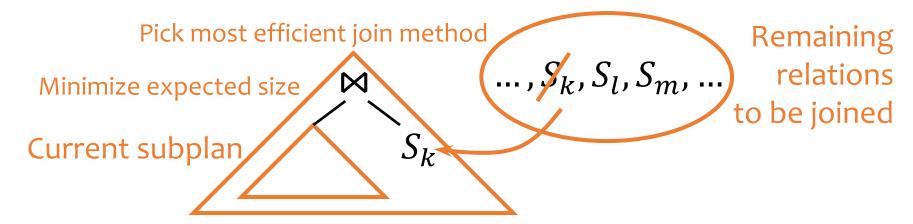
Left-deep plans



- Heuristic: consider only "left-deep" plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times you will not want it to be a complex subtree
- How many left-deep plans are there for $R_1 \bowtie \cdots \bowtie R_n$?
 - Significantly fewer, but still lots—n! (720 for n=6)

A greedy algorithm

- $S_1, ..., S_n$
 - Say selections have been pushed down; i.e., $S_i = \sigma_p(R_i)$
- Start with the pair S_i , S_j with the smallest estimated size for $S_i \bowtie S_j$
- Repeat until no relation is left: Pick S_k from the remaining relations such that the join of S_k and the current result yields an intermediate result of the smallest size



Selinger's algorithm: A dynamic programming approach

Optimal for "whole" made up from optimal for "parts"

Principle of Optimality

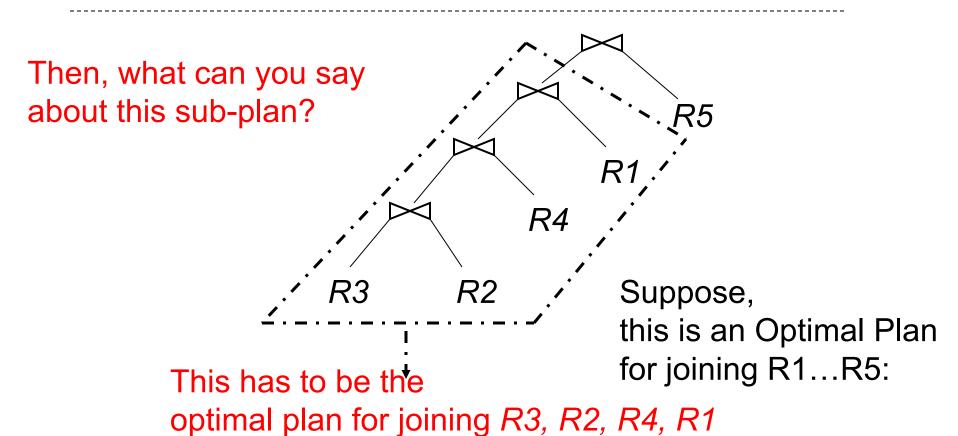
Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5$

R5
R1
R4
Suppose,

this is an Optimal Plan for joining R1...R5:

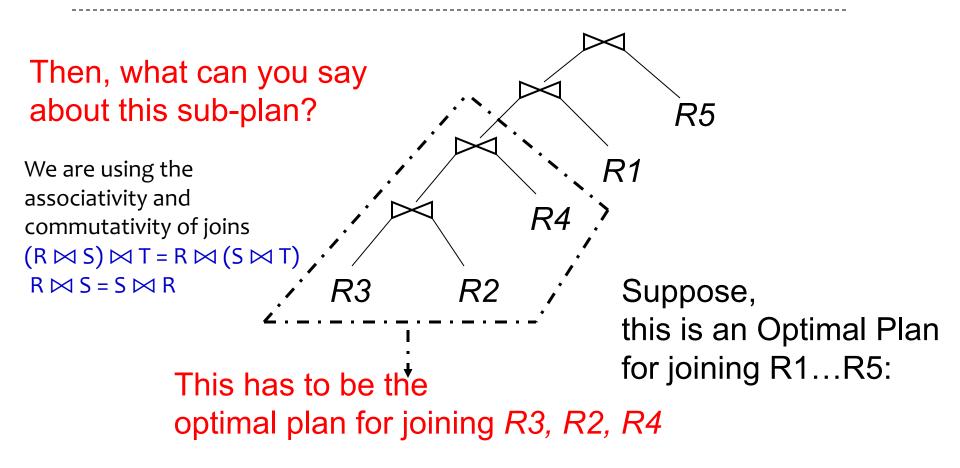
Principle of Optimality

Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5$



Principle of Optimality

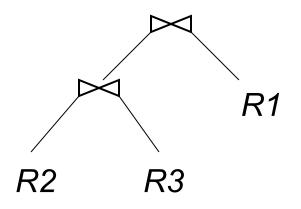
Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5$



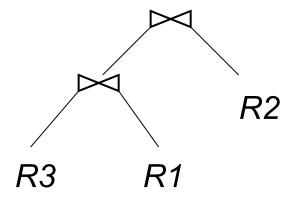
Exploiting Principle of Optimality

Query: $R1 \bowtie R2 \bowtie ... \bowtie Rn$

Both are giving the same result $R2 \bowtie R3 \bowtie R1 = R3 \bowtie R1 \bowtie R2$



Optimal for joining *R1*, *R2*, *R3*



Sub-Optimal for joining *R1*, *R2*, *R3*

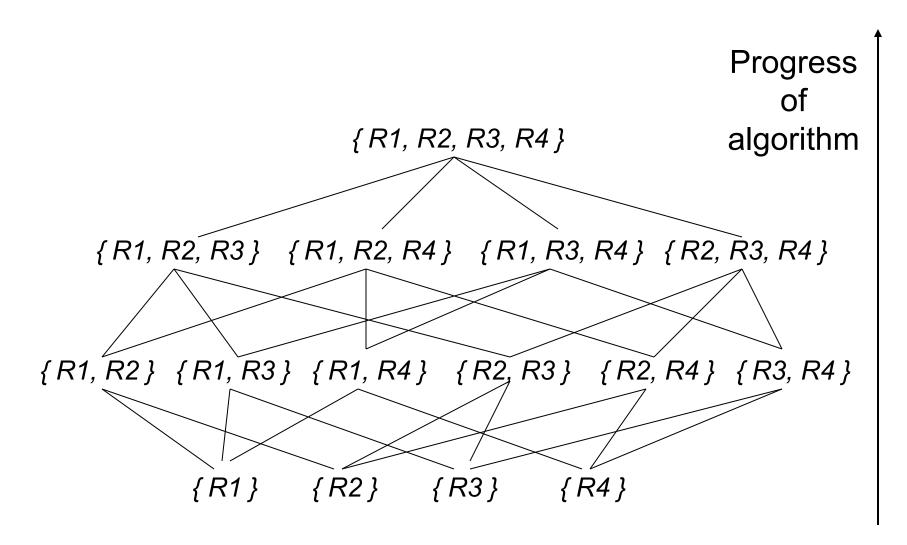
OPT ({ R1, R2, R3 }):

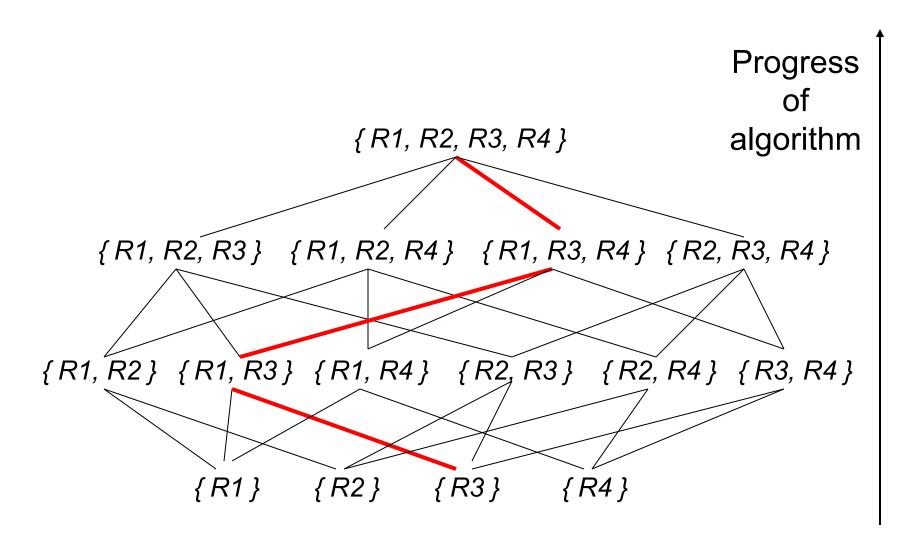
```
OPT ( { R1, R2 } ) + cost-to-join ({R1, R2 }, {R3})

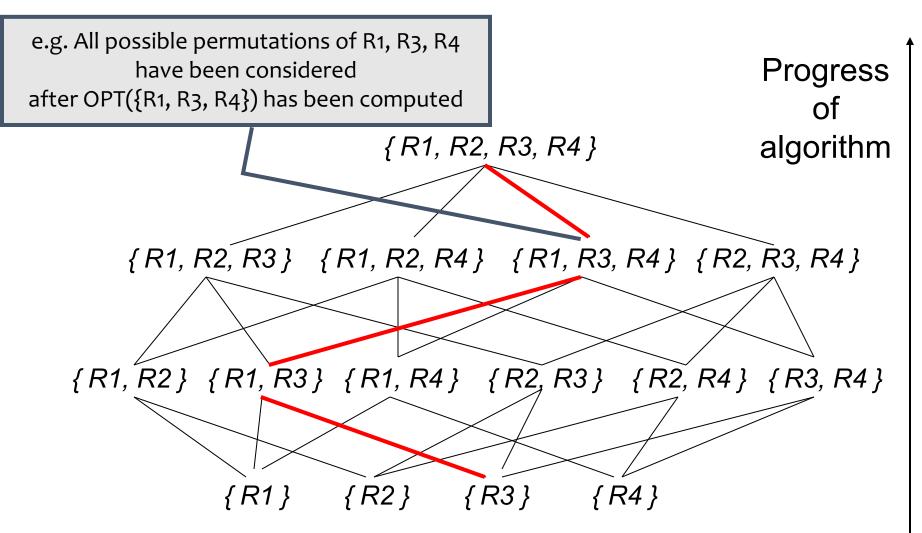
Min

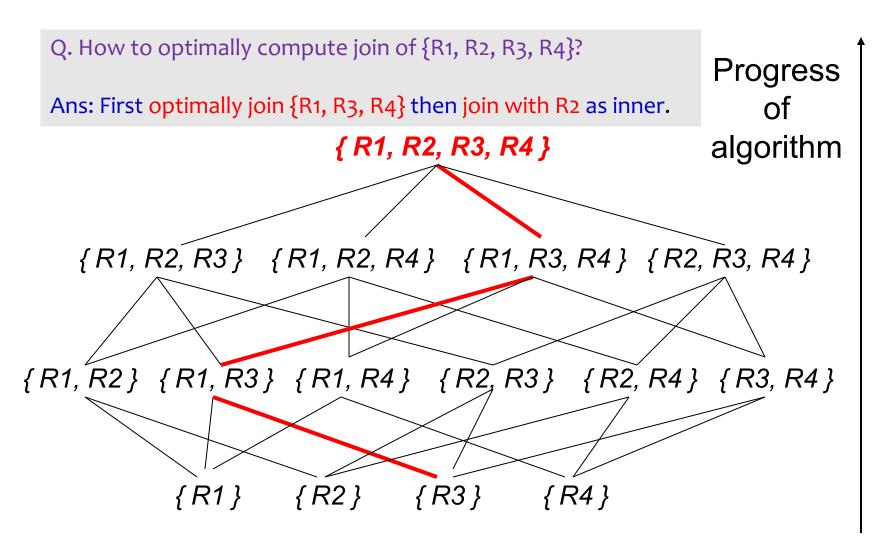
OPT ( { R2, R3 } ) + cost-to-join ({R2, R3 }, {R1})

OPT ( { R1, R3 } ) + cost-to-join ({R1, R3 }, {R2})
```

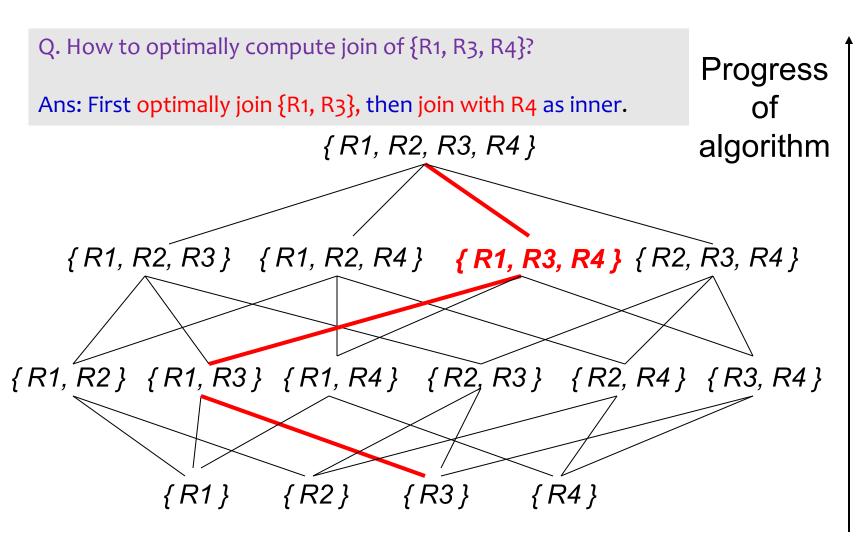




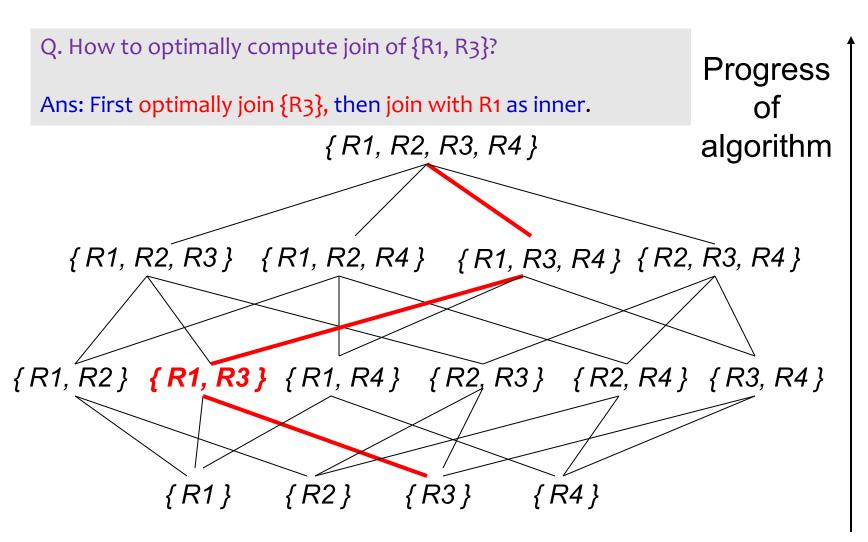




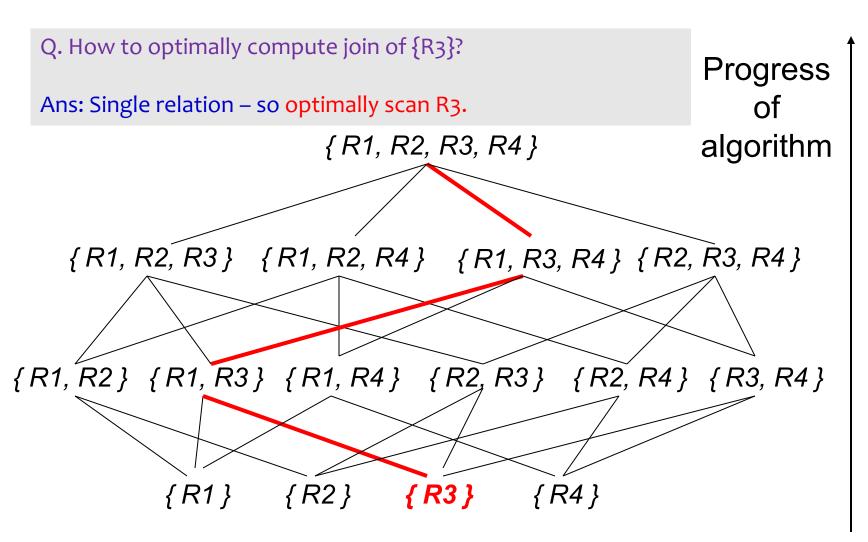
Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4$



Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4$



Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4$



Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4$

Final optimal plan:

R2

R3

R1

NOTE: There is a one-one correspondence between the permutation (R₃, R₁, R₄, R₂) and the above left deep plan

The need for "interesting order"

- Optimal plan may not have an optimal sub-plan in practice!
- Example: $R(A,B) \bowtie S(A,C) \bowtie T(A,D)$
- Best plan for $R \bowtie S$: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, dup elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

When picking the best plan

- Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
- Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y, and
 - Interesting orders produced by X "subsume" those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order

Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach

Practice problem: Estimating the cost of the entire plan

V(B,author) = 500no. of pages no. of tuples S(sid,name,age,addr) 7 <= age <= 24 T(S)=10,000B(S)=1,000B(bid,title,author) T(B)=50,000B(B)=5,000V(B,author) = 500C(sid,bid,date) B(C)=15,000T(C)=300,0007 <= age <= 24 Physical Query Plan (On the fly) (g) Π_{name} Q. Compute 1. the cost and cardinality in (On the fly) (f) $\sigma_{12\text{<}age\text{<}20}$ steps (a) to (g) 2. the total cost (Block nested loop (e) **Assumptions (given):** S inner) sid **Unclustered B+tree** index on B.author (d) Π_{sid} (On the fly) Clustered B+tree index (Indexed-nested loop, on C.bid B outer, C inner) All index pages are in (C) bid memory **Unlimited memory** (On the fly) (b) \prod_{bid} Student S Checkout C (a) $\sigma_{\text{author}} = \text{`Olden Fames'}$ (File scan) (Index scan) Book B (Index scan)

```
T(C)=300,000
C(sid,bid,date): Cl. B+ on bid
                        (On the fly) (g) \Pi name
                      (On the fly)
        (Block nested loop
                                                (e)
        S inner)
                       (d) \Pi_{sid} (On the fly)
(Indexed-nested loop,
B outer, C inner)
                                   (C)
                                          Student S
                           bid
                                         (File scan)
    (On the fly) (b) \prod_{bid}
                              Checkout C
    (a) \sigma_{\text{author}} = \text{`Olden Fames'}
                             (Index scan)
             Book B
       (Index scan)
```

B(bid,title,author): Un. B+ on author T(B)=50,000

S(sid,name,age,addr)

T(S)=10,000

B(S)=1,000 B(B)=5,000 B(C)=15,000 V(B,author) = 500 7 <= age <= 24

```
Cost =
T(B) / V(B, author)
= 50,000/500
= 100 (unclustered)

Cardinality =
100
```

```
B(bid,title,author): Un. B+ on author T(B)=50,000
                                       T(C)=300,000
                                                        B(C)=15,000
C(sid,bid,date): Cl. B+ on bid
                       (On the fly) (g) \Pi name
                                                         Cost =
                     (On the fly)
                                                         0 (on the fly)
        (Block nested loop
                                                         Cardinality =
                                              (e)
        S inner)
                                                          100
                      (d) \Pi_{sid} (On the fly)
(Indexed-nested loop,
B outer, C inner)
                                  (C)
                                        Student S
                          bid
                                        (File scan)
    (On the fly) (b) \prod_{bid}
                             Checkout C
   (a) \sigma_{\text{author}} = \text{`Olden Fames'}
                            (Index scan)
             Book B
       (Index scan)
```

S(sid,name,age,addr)

T(S)=10,000

B(S)=1,000

B(B)=5,000

V(B,author) = 5007 <= age <= 24

B(bid,title,author): Un. B+ on author T(B)=50,000T(C)=300,000C(sid,bid,date): Cl. B+ on bid (On the fly) (g) Π name (On the fly) (f) $\sigma_{12 < age < 20}$ (Block nested loop) (e) S inner) (d) Π_{sid} (On the fly) (Indexed-nested loop, B outer, C inner) (C) Student S bid (File scan) (On the fly) (b) \prod_{bid} Checkout C (a) $\sigma_{\text{author}} = \text{`Olden Fames'}$ (Index scan) Book B (Index scan)

S(sid,name,age,addr)

T(S)=10,000

- B(S)=1,000 B(B)=5,000 B(C)=15,000 V(B,author) = 500 7 <= age <= 24
 - one index lookup per outer B tuple
 - 1 book has T(C)/ T(B) = 6checkouts (uniformity)
 - # C tuples per page = T(C)/B(C) = 20
 - 6 tuples fit in at most 2 consecutive pages (clustered) could assume 1 page as well

Cardinality = 100 * 6 = 600

$$V(C, bid) = V(B, bid) = T(B) = 50,000$$

```
B(bid,title,author): Un. B+ on author T(B)=50,000
                                                       B(B)=5,000
                                                                         7 <= age <= 24
                                      T(C)=300,000 B(C)=15,000
C(sid,bid,date): Cl. B+ on bid
                      (On the fly) (g) \Pi name
                     (On the fly)
                                                         Cost =
                                                         0 (on the fly)
        (Block nested loop
                                             (e)
        S inner)
                                                         Cardinality =
                                                         600
                      (d) \Pi_{sid} (On the fly)
(Indexed-nested loop,
B outer, C inner)
                                 (C)
                                       Student S
                          bid
                                       (File scan)
    (On the fly) (b) \prod_{bid}
                            Checkout C
   (a) \sigma_{\text{author}} = \text{`Olden Fames'}
                           (Index scan)
             Book B
       (Index scan)
```

T(S)=10,000

S(sid,name,age,addr)

B(S)=1,000

V(B,author) = 500

T(C)=300,000C(sid,bid,date): Cl. B+ on bid (On the fly) (g) Π_{name} (On the fly) (Block nested loop (e) S inner) (d) Π_{sid} (On the fly) (Indexed-nested loop, B outer, C inner) (C) Student S bid (File scan) Checkout C (a) $\sigma_{\text{author}} = \text{`Olden Fames'}$ (Index scan) Book B (Index scan)

B(bid,title,author): Un. B+ on author T(B)=50,000

S(sid,name,age,addr)

B(S)=1,000 B(B)=5,000 B(C)=15,000 V(B,author) = 500 7 <= age <= 24

Outer relation is already in (unlimited) memory need to scan S relation

Cost =
$$B(S) = 1000$$

T(S)=10,000

Cardinality = 600 (one student per checkout)

T(C)=300,000C(sid,bid,date): Cl. B+ on bid (On the fly) (g) Π name (On the fly) (Block nested loop (e) S inner) (d) Π_{sid} (On the fly) (Indexed-nested loop, B outer, C inner) (C) Student S bid (File scan) (On the fly) (b) \prod_{bid} Checkout C (a) $\sigma_{\text{author}} = \text{`Olden Fames'}$ (Index scan) Book B (Index scan)

B(bid,title,author): Un. B+ on author T(B)=50,000

S(sid,name,age,addr)

T(S)=10,000

B(S)=1,000 B(B)=5,000 B(C)=15,000 V(B,author) = 500 7 <= age <= 24

```
Cost =
0 (on the fly)

Cardinality =
600 * 7/18 = 234 (approx)
```

```
T(C)=300,000
                                                         B(C)=15,000
C(sid,bid,date): Cl. B+ on bid
                       (On the fly) (g) \Pi name
                      (On the fly)
        (Block nested loop
                                                          Cardinality =
                                               (e)
        S inner)
                                                          234
                       (d) \Pi_{sid} (On the fly)
(Indexed-nested loop,
B outer, C inner)
                                  (C)
                                         Student S
                           bid
                                        (File scan)
    (On the fly) (b) \prod_{bid}
                             Checkout C
   (a) \sigma_{\text{author}} = \text{`Olden Fames'}
                            (Index scan)
             Book B
       (Index scan)
```

B(bid,title,author): Un. B+ on author T(B)=50,000

S(sid,name,age,addr)

T(S)=10,000

Cost =
0 (on the fly)

V(B,author) = 500

7 <= age <= 24

B(S)=1,000

B(B)=5,000

```
V(B,author) = 500
B(bid,title,author): Un. B+ on author T(B)=50,000
                                                       B(B)=5,000
                                                                          7 <= age <= 24
                                      T(C)=300,000 B(C)=15,000
C(sid,bid,date): Cl. B+ on bid
                      (On the fly) (g) \Pi_{name} (total)
                                                        Total cost =
                     (On the fly)
                              (f) \sigma_{12 < age < 20}
                                                        1300
        (Block nested loop
                                             (e)
                                                        Final cardinality =
        S inner)
                                     sid
                                                        234 (approx)
                      (d) \Pi_{sid} (On the fly)
(Indexed-nested loop,
B outer, C inner)
                                 (C)
                                        Student S
                          bid
                                       (File scan)
    (On the fly) (b) \prod_{bid}
                             Checkout C
   (a) \sigma_{\text{author}} = \text{`Olden Fames'}
                           (Index scan)
             Book B
       (Index scan)
```

T(S)=10,000

S(sid,name,age,addr)

B(S)=1,000