Transaction Processing

Introduction to Databases
CompSci 316 Spring 2019

DUKE

COMPUTER SCIENCE

|

Announcements (Thu., Apr. 11)

-problem 3 due Monday

Review

: TX’s are either completely done or not done
at all

: TX’s should leave the database in a
consistent state

: TX’s must behave as if they are executed in
isolation

: Effects of committed TX’s are resilient against
failures

* SQL transactions

SELECT ...;
UPDATE ...;

| :

Concurrency control

* Goal: ensure the “1” (isolation) in ACID

T;: T,:
read(A); read(A);
write(A); write(A);
read(B); read(C);
write(B); write(C);
commit; commit;

o —

A B C

I

r(A)
w(A)

r(B)
w(B)

r(A)
W(A)

r(C)
w(C)

I

r(A)

W(A)

r(B)

w(B)

r(A)

W(A)

r(C)

w(C)

Good versus bad schedules

r(A)
w(A)

r(B)

w(B)

r(A)

W(A)

r(C)

w(C)

Serial schedule

* Execute transactions in order, with
of operations
e T,.1(A), T1.W(A), Ty.r(B), T.w(B), Ty.r(A), Ty.W(A),
T,.r(C), T,.W(C)
o Ty.r(A), To.W(A), Ty.r(C), To.w(C), Ty.r(A), Ty.w(A),
T,.r(B), T,.w(B)
" |solation achieved by definition!

 Problem: at all

* Question: how to reorder operations to allow more
concurrency

Conflicting operations

* Two operations on the data item if at
least one of the operations is a write
* r(X) and w(X) conflict
* w(X) and r(X) conflict
* w(X) and w(X) conflict
* r(X) and r(X) do not conflict
* r/w(X) and r/w(Y) do not conflict

* Order of conflicting operations matters

* E.g., if T;.r(A) precedes T,.w(A), then conceptually, T;
should precede T,

Precedence graph

e A for each transaction

* A trom T; to T; it an operation of T;
precedes and conflicts with an operation of T; in
the schedule

Ty T, T Ty I3 T
r(A) r(A)
W(A) |_r(A)
() & w(A) &
W(A) w(A)
r(B) r(B)
r(C) r(0)
w(B) w(B)
w(C) w(C)

Conflict-serializable schedule

* Ascheduleis iff its precedence
graph has

* A conflict-serializable schedule is equivalent to
some serial schedule (and therefore is “good”’)

* In that serial schedule, transactions are executed in the
topological order of the precedence graph

* You can get to that serial schedule by repeatedly
swapping adjacent, non-conflicting operations from
different transactions

Locking

* Rules

* If a transaction wants to read an object, it must first
request a shared lock (S mode) on that object

* If a transaction wants to modify an object, it must first
request an exclusive lock (X mode) on that object

* Allow one exclusive lock, or multiple shared locks

Mode of the lock requested

EERES

Mode of lock(s)
Bl s No Grant the lock?

currently held
by other transactions No No

Compatibility matrix

10

"

Basic locking is not enough

Add1tobothAandB 17

T, Multiply both A and B by 2

(preserve A=B)
Iock-Xi,R
Read 100 r)

Write 100+1 W(A
unlock(A)

Possible schedule
under locking

But still not
conflict-serializable!

lock-X(B)
Read 200 r(B)

Write 200+1 w(B)

unlock(B)

(preserves A=B)

ock-X(A)

(A) Read 101 @
W(A)(V\)/rite 101%2
unlock(A

I ck)X(B) @
"%B Read 100

WQB) Write 100*2
unlock(B)

A+ B!

Two-phase locking (2PL)

* All lock requests precede all unlock requests
* Phase 1: obtain locks, phase 2: release locks

T; T5 I I
lock-X(A)

r(A) r(A)

w(A) w(A)
lock-X(B) r(A)
unlock(A) w(A)

r(A) r(B)
w(A) w(B)
r(B)
r(B) w(B)
w(B)
r(B)
w(B)

unlock(B)

Remaining problems of 2PL

Iy

r(A)
w(A)

r(B)
w(B)

I * T, has read uncommitted
data written by T,
A) * If T; aborts, then T, must
W(A) abort as well
possible if
(B) other transactions have
w(B) read data written by T,

* Even worse, what if T, commits before T;?

* Schedule is if the system crashes right
after T, commits

Strict 2PL

* Only release locks at commit/abort time

A writer will block all other readers until the writer
commits or aborts

* Used in many commercial DBMS
* Oracle is a notable exception

Recovery

* Goal: ensure “A” (atomicity) and “D” (durability)

http://mnaxe.com/wp-content/uploads/2014/06/Notebook-Tablet-and-Laptop-Data-Recovery.jpg

15

Execution model

To read/write X

* The disk block containing X must be first brought
into memory

* X is read/written in memory

* The memory block containing X, if modified, must
be written back (flushed) to disk eventually

CPU

Memory,
buffer

B

—

Disk

m

Failures

» System crashes in the middle of a transaction T;
partial effects of T were written to disk

* How do we undo T ()?

* System crashes right after a transaction T commits;
not all effects of T were written to disk

* How do we complete T ()?

Naive approach

: When a transaction commits, all writes of
this transaction must be reflected on disk

* Without force, if system crashes right after T commits,
effects of T will be lost

“ Problem: Lots of random writes hurt performance

: Writes of a transaction can only be flushed
to disk at commit time

* With steal, if system crashes before T commits but after
some writes of T have been flushed to disk, there is no
way to undo these writes

® Problem: Holding on to all dirty blocks requires lots of
memory

Logging

* Sequence of , recording all changes made to
the database

 Written to stable storage (e.g., disk) during normal
operation

* Used inrecovery

* Hey, one change turns into two—bad for
performance?
* But writes are sequential (append to the end of log)
* Can use dedicated disk(s) to improve performance

Undo/redo logging rules

* When a transaction T, starts, log
 Record values before and after each modification:

* T.is transaction id and X identifies the data item
* A transaction T, is committed when its commit log record
is written to disk
): Before X is modified on disk,

the log record pertaining to X must be flushed

* Without WAL, system might crash after X is modified on disk but
before its log record is written to disk—no way to undo

: A transaction can commit even if its modified
memory blocks have not be written to disk (since redo
information is logged)

: Modified memory blocks can be flushed to disk
anytime (since undo information is logged)

Undo/redo logging example

T, (balance transfer of $100 from A to B)

read(A, a); a=a-100;

Memory buffer
write(A, a);
read(B, b); b = b +100; A = 880
write(B, b); B = 460
commit;

< Disk > f[—_log 3
(T, start)

A =3860 (T1, A, 800, 700)
B =450
\

o (T, B, 400,500)
(T,, commit)

N— -

Checkpointing

* Where does recovery start?
Naive approach:

* To checkpoint:

Stop accepting new
transactions (lame!)

Finish all active
transactions

Take a database dump

* To recover:
* Start from last checkpoint

http://www .saintlouischeckpoints.com/wp-content/uploads/2013/08/dui20checkpoint200220172011.jpg

22

Fuzzy checkpointing

* Determine S, the set of (ids of)
, and log

* Flush all blocks (dirty at the time of the checkpoint)
at your leisure

* Log

* Between begin and end, continue processing old
and new transactions

An UNDO/REDO log with checkpointing

<START T1> e T2is active

<T1, A, 4,5> T2’s new B value will be written to

<START T2> disk when the checkpointing begins
COMMIT T1 .
< g * During CKPT,
<T2, B, 9, 10> e e ey s
J — flush A to disk if it is not already there
<START CKPT(T2)> (dirty buffer)
<12, , 14, 15> — flush B to disk if it is not already there
<START T3> (dirty buffer)
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>

<COMMIT T3>

Recovery: analysis and redo phase

* Need to determine U, the set of

* Scan log backward to find the
and follow the pointer to find the

* Initially, let U be S

* Scan from that start-checkpoint to end of
the log
* Foralog record ,add Tto U
* Foralog record ,remove T from U

* Foralog record , issue write(X, new)

Recovery:
An UNDO/REDO log with checkpointing

Log records

<START T1> T1has committed and writes on disk
<T1, A, 4, 5> — ignore T1

2 REDOT2andT3
<COMMIT T1> . Write C = 15

<T2, B, 9, 10>

——+<START CKPT(T2)> * Write D =20
<T2, G, 14, 15>
<START T3> * Atthe end U = empty, do nothing
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

CRASH

26

Recovery: undo phase

* Scanlog
 Undo the effects of transactions in U

* That is, for each log record where T is in
U, issue write(X, old), and log this operation too (part of
the “repeating-history” paradigm)

* Log when all effects of T have been undone

% An optimization
* Each log record stores a pointer to the previous log
record for the same transaction; follow the pointer chain
during undo

28

Recovery:
An UNDO/REDO log with checkpointing

Log records

<START T1> * T1 has committed and writes on disk

<T1, A, 4, 5> — ignore T1

<START T2> e T2 COmmittEd, 13 uncommitted, U= {TB}
<COMMIT T1> e REDO T2 and UNDO T3

<T2, B, 9, 10> * ForT2

———+<START CKPT(T2)> — setCto15
— not necessary to set B to 10 (before END

€12, 045 152 CKPT - already on disk)

<START T3> ForT3
<T3) D, 19, 20> — reset D to 19

<END CKPT> — if T3 had started before START CKPT,
<COMMIT T2> would have had to look before START

CKPT for more actions to be undone
ITT3>

Summary

* Concurrency control
* Serial schedule: no interleaving

* Conflict-serializable schedule: no cycles in the
precedence graph; equivalent to a serial schedule

* 2PL: guarantees a conflict-serializable schedule
* Strict 2PL: also guarantees recoverability

* Recovery: undo/redo logging with fuzzy
checkpointing
* Normal operation: write-ahead logging, no force, steal

* Recovery: first redo (forward), and then undo
(backward)

