
Map-reduce and Spark
Introduction to Databases

CompSci 316 Spring 2019

Announcements (Tue., Apr. 16)

• Project demos—sign-up instructions to be emailed
soon

• Homework #4 final due dates
• Problem 3: today 04/16

• Problems 4, 5, 6 : next Monday 04/22

• Problem X1: next Wednesday 04/24

2

3

MapReduce: motivation

• Many problems can be processed in this pattern:
• Given a lot of unsorted data

• Map: extract something of interest from each record

• Shuffle: group the intermediate results in some way

• Reduce: further process (e.g., aggregate, summarize,
analyze, transform) each group and write final results

(Customize map and reduce for problem at hand)

Make this pattern easy to program and
efficient to run
• Original Google paper in OSDI 2004

• Hadoop has been the most popular open-source
implementation

• Spark still supports it

4

M/R programming model

• Input/output: each a collection of key/value pairs

• Programmer specifies two functions
• map 𝑘1, 𝑣1 → list 𝑘2, 𝑣2

• Processes each input key/value pair, and produces a list of
intermediate key/value pairs

• reduce 𝑘2, list 𝑣2 → list 𝑣3
• Processes all intermediate values associated with the same key,

and produces a list of result values (usually just one for the key)

5

Simple Example: Map-Reduce

• Word counting

• Inverted indexes

Ack:
Slide by Prof. Shivnath Babu

6

M/R example: word count

• Expected input: a huge file (or collection of many
files) with millions of lines of English text

• Expected output: list of (word, count) pairs

• Implementation
• map _, line → list word, count

• Given a line, split it into words, and output 𝑤, 1 for each word 𝑤
in the line

• reduce word, list count → word, count
• Given a word 𝑤 and list 𝐿 of counts associated with it, compute
𝑠 = σcount∈𝐿 count and output 𝑤, 𝑠

• Optimization: before shuffling, map can pre-aggregate
word counts locally so there is less data to be shuffled
• This optimization can be implemented in Hadoop as a “combiner”

7

M/R execution
8

Data not necessary local

Distributed file system (e.g., HDFS)

M M M M M

R R R

Distributed file system

Final results go
to distributed
file system

Reduce tasks:

Map tasks:

Shuffle:

Each map
task gets an
input
“split”

Intermediate
results go to
local disk

Some implementation details

• There is one “master” node

• Input file gets divided into 𝑚 “splits,” each a
contiguous piece of the file

• Master assigns 𝑚 map tasks (one per split) to
“workers” and tracks their progress

• Map output is partitioned into 𝑟 “regions”

• Master assigns 𝑟 reduce tasks (one per region) to
workers and tracks their progress

• Reduce workers read regions from the map workers’
local disks

9

M/R execution timeline

• When there are more tasks than workers, tasks
execute in “waves”
• Boundaries between waves are usually blurred

• Reduce tasks can’t start until all map tasks are done

10

M

M

M M

M

M

R

R

R

R

R

RM M

M M

time

More implementation details

• Numbers of map and reduce tasks
• Larger is better for load balancing

• But more tasks add overhead and communication

• Worker failure
• Master pings workers periodically

• If one is down, reassign its split/region to another worker

• “Straggler”: a machine that is exceptionally slow
• Pre-emptively run the last few remaining tasks

redundantly as backup

11

M/R example: Hadoop TeraSort

• Expected input: a collection of (key, payload) pairs

• Expected output: sorted (key, payload) pairs

• Implementation
• Using a small sample of input, find 𝑟 − 1 key values that

divides the key range into 𝑟 subranges where # pairs is
roughly equal across them

• map 𝑘, payload → 𝑗, 𝑘, payload
• If 𝑘 falls within the 𝑗-th subrange

• reduce 𝑗, list 𝑘, payload → list 𝑘, payload
• Sort the list of 𝑘, payload pairs by 𝑘 and output

12

13

We will focus on the Python dialect,
although Spark supports multiple languages

Why a New Programming Model?

• MapReduce greatly simplified big data analysis

• But as soon as it got popular, users wanted more:
• More complex, multi-stage iterative applications

(graph algorithms, machine learning)
• More interactive ad-hoc queries
• More real-time online processing

• All three of these apps require fast data sharing across
parallel jobs

Borrowed slide

Ack: Slide by Prajakta Kalmegh

14

Data Sharing in MapReduce

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Slow due to replication, serialization, and disk IO
Borrowed slide

Ack: Slide by Prajakta Kalmegh

15

iter. 1 iter. 2 . . .

Input

Data Sharing in Spark

Distributed
memory

Input

query 1

query 2

query 3

. . .

one-time
processing

10-100× faster than network and disk
Borrowed slide

Ack: Slide by Prajakta Kalmegh

16

Addressing inefficiencies in Hadoop

• Hadoop: no automatic optimization

☞Spark
• Allow program to be a DAG of DB-like operators, with less

reliance on black-box code

• Delay evaluation as much as possible

• Fuse operators into stages and compile each stage

• Hadoop: too many I/Os
• E.g., output of each M/R job is always written to disk

• But such checkpointing simplifies failure recovery

☞Spark
• Keep intermediate results in memory

• Instead of checkpointing, use “lineage” for recovery

17

RDDs

• Spark stores all intermediate results as Resilient
Distributed Datasets (RDDs)
• Immutable, memory-resident, and distributed across

multiple nodes

• Spark also tracks the “lineage” of RDDs, i.e., what
expressions computed them
• Can be done at the partition level

18

What happens to a RDD if a node
crashes?

• The partition of this RDD on this node will be lost

• But with lineage, the master simply recomputes the a
lost partition when needed
• Requires recursive recomputation if input RDD partitions

are also missing

19

Example: votes & explanations

• Raw data reside in lots of JSON files obtained from
ProPublica API

• Each vote: URI (id), question, description, date, time,
result

• Each explanation: member id, name, state, party,
vote URI, date, text, category
• E.g., “P000523”, “David E. Price”, “NC”, “D”,

“https://api.propublica.org/congress/v1/115/house/sessio
ns/2/votes/269.json”, “2018-06-20”, “Mr. Speaker, due to
adverse weather and numerous flight delays and
cancellations in North Carolina, I was unable to vote
yesterday during Roll Call 269, the motion…”, “Travel
difficulties”

20

Basic M/R with Spark RDD

explain_fields = ('member_id', 'name', 'state', 'party', 'vote_api_uri’,
'date', 'text', 'category')

Map function:

def rdd_count_by_category_map(record):

if len(record) == len(explain_fields):

return [(record[explain_fields.index('category')], 1)]

else:

return []

Reduce function:

def rdd_count_by_category_reduce(record):

key, vals = record

return [(key, len(vals))]

21

map 𝑘1, 𝑣1 → list 𝑘2, 𝑣2

reduce 𝑘2, list 𝑣2 → list 𝑣3

Basic M/R with Spark RDD

setting up one RDD that contains all the input:

rdd = sc. ...

count number of explanations by category; order by

number (descending) and then category (ascending):

result = rdd\

.flatMap(rdd_count_by_category_map)\

.groupByKey()\

.flatMap(rdd_count_by_category_reduce)\

.sortBy(lambda x: (-x[1], x[0]))

for row in result.collect():

print('|'.join(str(field) for field in row))

22

Be lazy: build up a DAG
of “transformations,” but
no evaluation yet!

Optimize & evaluate
the whole DAG only
when needed, e.g.,
triggered by “actions”
like collect()

Be careful: Spark RDDs support map() and reduce() too,
but they are not the same as those in MapReduce

Moving “BD” to “DB”

Each element in a RDD is an opaque object—hard to
program

• Why don’t we make each element a “row” with
named columns—easier to refer to in processing
• RDD becomes a DataFrame (name from the R language)

• Still immutable, memory-resident, and distributed

• Then why don’t we have database-like operators
instead of just MapReduce?
• Knowing their semantics allows more optimization

• Spark in fact pushed the idea further
• Spark Dataset = DataFrame with type-checking

• And just run SQL over Datasets using SparkSQL!

23

Spark DataFrame

from pyspark.sql import functions as F

explain_fields = ('member_id', 'name', 'state', 'party', 'vote_api_uri’,
'date', 'text', 'category’)

setting up a DataFrame of explanations:

df_explain = sc. ...

count number of explanations by category; order by

number (descending) and then category (ascending):

df_explain.groupBy('category')\

.agg(F.count('name'))\

.withColumnRenamed('count(name)', 'count')\

.sort(['count', 'category'], ascending=[0, 1])\

.show(10000, truncate=False)

24

Another Spark DataFrame Example
25

from pyspark.sql import functions as F

vote_fields = ('vote_uri','question','description','date','time','result')

explain_fields = ('member_id', 'name', 'state', 'party', 'vote_api_uri’,
'date', 'text', 'category’)

setting up DataFrames for each type of data:

df_votes = sc. ...

df_explain = sc. ...

what does the following do?

df_votes.join(df_explain.select('vote_api_uri', 'name'),

df_votes.vote_uri == df_explain.vote_api_uri, 'left_outer')\

.groupBy('vote_uri', 'date', 'time', 'question', 'description', 'result')\

.agg(F.count('name'), F.collect_list('name'))\

.withColumnRenamed('count(name)', 'count')\

.withColumnRenamed('collect_list(name)', 'names')\

.sort(['count', 'date', 'time'], ascending=[0, 0, 0])\

.select('vote_uri', 'date', 'time', 'question', 'description', 'result’,

'count', 'names’)\

.show(20, truncate=False)

For each vote, find out which legislators provided
explanations; order by the number of such legislators
(descending), then date and time (descending)

Check yourself

