
Map-reduce and Spark
Introduction to Databases

CompSci 316 Spring 2019

Announcements (Tue., Apr. 16)

• Project demos—sign-up instructions to be emailed
soon

• Homework #4 final due dates
• Problem 3: today 04/16

• Problems 4, 5, 6 : next Monday 04/22

• Problem X1: next Wednesday 04/24

2

3

MapReduce: motivation

• Many problems can be processed in this pattern:
• Given a lot of unsorted data

• Map: extract something of interest from each record

• Shuffle: group the intermediate results in some way

• Reduce: further process (e.g., aggregate, summarize,
analyze, transform) each group and write final results

(Customize map and reduce for problem at hand)

Make this pattern easy to program and
efficient to run
• Original Google paper in OSDI 2004

• Hadoop has been the most popular open-source
implementation

• Spark still supports it

4

M/R programming model

• Input/output: each a collection of key/value pairs

• Programmer specifies two functions
• map 𝑘1, 𝑣1 → list 𝑘2, 𝑣2

• Processes each input key/value pair, and produces a list of
intermediate key/value pairs

• reduce 𝑘2, list 𝑣2 → list 𝑣3
• Processes all intermediate values associated with the same key,

and produces a list of result values (usually just one for the key)

5

Simple Example: Map-Reduce

• Word counting

• Inverted indexes

Ack:
Slide by Prof. Shivnath Babu

6

M/R example: word count

• Expected input: a huge file (or collection of many
files) with millions of lines of English text

• Expected output: list of (word, count) pairs

• Implementation
• map _, line → list word, count

• Given a line, split it into words, and output 𝑤, 1 for each word 𝑤
in the line

• reduce word, list count → word, count
• Given a word 𝑤 and list 𝐿 of counts associated with it, compute
𝑠 = σcount∈𝐿 count and output 𝑤, 𝑠

• Optimization: before shuffling, map can pre-aggregate
word counts locally so there is less data to be shuffled
• This optimization can be implemented in Hadoop as a “combiner”

7

M/R execution
8

Data not necessary local

Distributed file system (e.g., HDFS)

M M M M M

R R R

Distributed file system

Final results go
to distributed
file system

Reduce tasks:

Map tasks:

Shuffle:

Each map
task gets an
input
“split”

Intermediate
results go to
local disk

Some implementation details

• There is one “master” node

• Input file gets divided into 𝑚 “splits,” each a
contiguous piece of the file

• Master assigns 𝑚 map tasks (one per split) to
“workers” and tracks their progress

• Map output is partitioned into 𝑟 “regions”

• Master assigns 𝑟 reduce tasks (one per region) to
workers and tracks their progress

• Reduce workers read regions from the map workers’
local disks

9

M/R execution timeline

• When there are more tasks than workers, tasks
execute in “waves”
• Boundaries between waves are usually blurred

• Reduce tasks can’t start until all map tasks are done

10

M

M

M M

M

M

R

R

R

R

R

RM M

M M

time

More implementation details

• Numbers of map and reduce tasks
• Larger is better for load balancing

• But more tasks add overhead and communication

• Worker failure
• Master pings workers periodically

• If one is down, reassign its split/region to another worker

• “Straggler”: a machine that is exceptionally slow
• Pre-emptively run the last few remaining tasks

redundantly as backup

11

M/R example: Hadoop TeraSort

• Expected input: a collection of (key, payload) pairs

• Expected output: sorted (key, payload) pairs

• Implementation
• Using a small sample of input, find 𝑟 − 1 key values that

divides the key range into 𝑟 subranges where # pairs is
roughly equal across them

• map 𝑘, payload → 𝑗, 𝑘, payload
• If 𝑘 falls within the 𝑗-th subrange

• reduce 𝑗, list 𝑘, payload → list 𝑘, payload
• Sort the list of 𝑘, payload pairs by 𝑘 and output

12

13

We will focus on the Python dialect,
although Spark supports multiple languages

Why a New Programming Model?

• MapReduce greatly simplified big data analysis

• But as soon as it got popular, users wanted more:
• More complex, multi-stage iterative applications

(graph algorithms, machine learning)
• More interactive ad-hoc queries
• More real-time online processing

• All three of these apps require fast data sharing across
parallel jobs

Borrowed slide

Ack: Slide by Prajakta Kalmegh

14

Data Sharing in MapReduce

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Slow due to replication, serialization, and disk IO
Borrowed slide

Ack: Slide by Prajakta Kalmegh

15

iter. 1 iter. 2 . . .

Input

Data Sharing in Spark

Distributed
memory

Input

query 1

query 2

query 3

. . .

one-time
processing

10-100× faster than network and disk
Borrowed slide

Ack: Slide by Prajakta Kalmegh

16

Addressing inefficiencies in Hadoop

• Hadoop: no automatic optimization

☞Spark
• Allow program to be a DAG of DB-like operators, with less

reliance on black-box code

• Delay evaluation as much as possible

• Fuse operators into stages and compile each stage

• Hadoop: too many I/Os
• E.g., output of each M/R job is always written to disk

• But such checkpointing simplifies failure recovery

☞Spark
• Keep intermediate results in memory

• Instead of checkpointing, use “lineage” for recovery

17

RDDs

• Spark stores all intermediate results as Resilient
Distributed Datasets (RDDs)
• Immutable, memory-resident, and distributed across

multiple nodes

• Spark also tracks the “lineage” of RDDs, i.e., what
expressions computed them
• Can be done at the partition level

18

What happens to a RDD if a node
crashes?

• The partition of this RDD on this node will be lost

• But with lineage, the master simply recomputes the a
lost partition when needed
• Requires recursive recomputation if input RDD partitions

are also missing

19

Example: votes & explanations

• Raw data reside in lots of JSON files obtained from
ProPublica API

• Each vote: URI (id), question, description, date, time,
result

• Each explanation: member id, name, state, party,
vote URI, date, text, category
• E.g., “P000523”, “David E. Price”, “NC”, “D”,

“https://api.propublica.org/congress/v1/115/house/sessio
ns/2/votes/269.json”, “2018-06-20”, “Mr. Speaker, due to
adverse weather and numerous flight delays and
cancellations in North Carolina, I was unable to vote
yesterday during Roll Call 269, the motion…”, “Travel
difficulties”

20

Basic M/R with Spark RDD

explain_fields = ('member_id', 'name', 'state', 'party', 'vote_api_uri’,
'date', 'text', 'category')

Map function:

def rdd_count_by_category_map(record):

if len(record) == len(explain_fields):

return [(record[explain_fields.index('category')], 1)]

else:

return []

Reduce function:

def rdd_count_by_category_reduce(record):

key, vals = record

return [(key, len(vals))]

21

map 𝑘1, 𝑣1 → list 𝑘2, 𝑣2

reduce 𝑘2, list 𝑣2 → list 𝑣3

Basic M/R with Spark RDD

setting up one RDD that contains all the input:

rdd = sc. ...

count number of explanations by category; order by

number (descending) and then category (ascending):

result = rdd\

.flatMap(rdd_count_by_category_map)\

.groupByKey()\

.flatMap(rdd_count_by_category_reduce)\

.sortBy(lambda x: (-x[1], x[0]))

for row in result.collect():

print('|'.join(str(field) for field in row))

22

Be lazy: build up a DAG
of “transformations,” but
no evaluation yet!

Optimize & evaluate
the whole DAG only
when needed, e.g.,
triggered by “actions”
like collect()

Be careful: Spark RDDs support map() and reduce() too,
but they are not the same as those in MapReduce

Moving “BD” to “DB”

Each element in a RDD is an opaque object—hard to
program

• Why don’t we make each element a “row” with
named columns—easier to refer to in processing
• RDD becomes a DataFrame (name from the R language)

• Still immutable, memory-resident, and distributed

• Then why don’t we have database-like operators
instead of just MapReduce?
• Knowing their semantics allows more optimization

• Spark in fact pushed the idea further
• Spark Dataset = DataFrame with type-checking

• And just run SQL over Datasets using SparkSQL!

23

Spark DataFrame

from pyspark.sql import functions as F

explain_fields = ('member_id', 'name', 'state', 'party', 'vote_api_uri’,
'date', 'text', 'category’)

setting up a DataFrame of explanations:

df_explain = sc. ...

count number of explanations by category; order by

number (descending) and then category (ascending):

df_explain.groupBy('category')\

.agg(F.count('name'))\

.withColumnRenamed('count(name)', 'count')\

.sort(['count', 'category'], ascending=[0, 1])\

.show(10000, truncate=False)

24

Another Spark DataFrame Example
25

from pyspark.sql import functions as F

vote_fields = ('vote_uri','question','description','date','time','result')

explain_fields = ('member_id', 'name', 'state', 'party', 'vote_api_uri’,
'date', 'text', 'category’)

setting up DataFrames for each type of data:

df_votes = sc. ...

df_explain = sc. ...

what does the following do?

df_votes.join(df_explain.select('vote_api_uri', 'name'),

df_votes.vote_uri == df_explain.vote_api_uri, 'left_outer')\

.groupBy('vote_uri', 'date', 'time', 'question', 'description', 'result')\

.agg(F.count('name'), F.collect_list('name'))\

.withColumnRenamed('count(name)', 'count')\

.withColumnRenamed('collect_list(name)', 'names')\

.sort(['count', 'date', 'time'], ascending=[0, 0, 0])\

.select('vote_uri', 'date', 'time', 'question', 'description', 'result’,

'count', 'names’)\

.show(20, truncate=False)

For each vote, find out which legislators provided
explanations; order by the number of such legislators
(descending), then date and time (descending)

Check yourself

