
4/23/2019

1

Parallel Data Processing
Introduction to Databases
CompSci 316 Spring 2019

Announcements (Thu., Apr. 18)

• Final project demo between April 29 (Mon)-May 1
(Wed)
• If anyone in your group is unavailable during these dates

and want to present your demo early please let Sudeepa
and Zhengjie know ASAP!

• Homework #4 final due dates
• Problem 3: today 04/16
• Problems 4, 5, 6 : next Monday 04/22
• Problem X1: next Wednesday 04/24

2

Parallel processing

• Improve performance by executing multiple
operations in parallel

• Cheaper to scale than relying on a single
increasingly more powerful processor

• Performance metrics
• Speedup, in terms of completion time
• Scaleup, in terms of time per unit problem size
• Cost: completion time × # processors × (cost per

processor per unit time)

3

Speedup

• Increase # processors → how much faster can we
solve the same problem?
• Overall problem size is fixed

4

processors

sp
ee

du
p

1

1 ×

reality

Scaleup

• Increase # processors and problem size
proportionally → can we solve bigger problems in
the same time?
• Per-processor problem size is fixed

5

processors & problem size

ef
fe

ct
iv

e
un

it
sp

ee
d

vs
. b

as
el

in
e

1

1 × linear scaleup (ideal)

reality

Cost

• Fix problem size

• Increase problem size
proportionally with
processors

6

processors

co
st

1

1 ×
linear speedup (ideal)

reality

processors & problem size

co
st

 p
er

un
it

pr
ob

le
m

 s
iz

e

1

1 ×

linear scaleup (ideal)

reality

4/23/2019

2

Why linear speedup/scaleup is hard
7

Why linear speedup/scaleup is hard

• Startup
• Overhead of starting useful work on many processors

• Communication
• Cost of exchanging data/information among processors

• Interference
• Contention for resources among processors

• Skew
• Slowest processor becomes the bottleneck

8

Shared-nothing architecture

• Most scalable (vs. shared-memory and shared-disk)
• Minimizes interference by minimizing resource sharing
• Can use commodity hardware

• Also most difficult to program

9

Disk Disk Disk

Mem Mem Mem

Proc Proc Proc

Interconnection network

Parallel query evaluation opportunities

• Inter-query parallelism
• Each query can run on a different processor

• Inter-operator parallelism
• A query runs on multiple processors
• Each operator can run on a different processor

• Intra-operator parallelism
• An operator can run on multiple processors, each

working on a different “split” of data/operation
☞Focus of this lecture

10

⨝

𝝲

⨝

𝝲

⨝

𝝲

⨝

𝝲

Parallel DBMS

11

E.g.:

Horizontal data partitioning

• Split a table 𝑅 into 𝑝 chunks, each stored at one of
the 𝑝 processors

• Splitting strategies?

12

4/23/2019

3

Horizontal data partitioning

• Split a table 𝑅 into 𝑝 chunks, each stored at one of
the 𝑝 processors

• Splitting strategies:
• Round robin assigns the 𝑖-th row assigned to chunk

𝑖 mod 𝑝

• Hash-based partitioning on attribute 𝐴 assigns row 𝑟 to
chunk ℎ 𝑟. 𝐴 mod 𝑝

• Range-based partitioning on attribute 𝐴 partitioning the
range of 𝑅. 𝐴 values into 𝑝 ranges, and assigns row 𝑟 to
the chunk whose corresponding range contains 𝑟. 𝐴

13

Teradata: an example parallel DBMS

• Hash-based partitioning of Customer on cid

14

A Customer row is inserted

AMP 1

AMP 2

AMP 3

AMP 4

AMP 5

AMP 6

AMP 7

AMP 8

AMP …

AMP …

AMP …

AMP …

AMP …

AMP …

AMP …

AMP …

…

hash(cid)

AMP = unit of parallelism in Teradata
Node 1 Node 2

Each Customer is assigned to an AMP

Example query in Teradata

• Find all orders today, along with the customer info

SELECT *
FROM Order o, Customer c
WHERE o.cid = c.cid
AND o.date = today();

15

join

scan
filter

scan

o.cid = c.cid

o.date =
today()

Order o
Customer c

Teradata example: scan-filter-hash
16

join

scan
filter

scan

o.cid = c.cid

o.date =
today()

Order o
Customer c

hash

filter

scan

o.cid

o.date =
today()

Order o

AMP AMP AMP

AMP AMP AMP
Consistent with
partitioning of
Customer; each
Order row is
routed to the
AMP storing
the Customer
row with the
same cid

hash

filter

scan

o.cid

o.date =
today()

Order o

hash

filter

scan

o.cid

o.date =
today()

Order o

Teradata example: hash join
17

AMP

join

scan

o.cid =
c.cid

Customer c

Each AMP processes
Order and Customer
rows with the same
cid hash

join

scan
filter

scan

o.cid = c.cid

o.date =
today()

Order o
Customer c

AMP

join

scan

o.cid =
c.cid

Customer c

AMP

join

scan

o.cid =
c.cid

Customer c

Parallel DBMS vs. MapReduce?
18

4/23/2019

4

Parallel DBMS vs. MapReduce

• Parallel DBMS
• Schema + intelligent indexing/partitioning
• Can stream data from one operator to the next
• SQL + automatic optimization

• MapReduce
• No schema, no indexing
• Higher scalability and elasticity

• Just throw new machines in!
• Better handling of failures and stragglers
• Black-box map/reduce functions → hand optimization

19

A brief tour of three approaches

• “DB”: parallel DBMS, e.g., Teradata
• Same abstractions (relational data model, SQL,

transactions) as a regular DBMS
• Parallelization handled behind the scene

• “BD (Big Data)” 10 years go: MapReduce, e.g., Hadoop
• Easy scaling out (e.g., adding lots of commodity servers)

and failure handling
• Input/output in files, not tables
• Parallelism exposed to programmers

• “BD” today: Spark
• Compared to MapReduce: smarter memory usage,

recovery, and optimization
• Higher-level DB-like abstractions (but still no updates)

20

Summary
• “DB”: parallel DBMS

• Standard relational operators
• Automatic optimization
• Transactions

• “BD” 10 years go: MapReduce
• User-defined map and reduce functions
• Mostly manual optimization
• No updates/transactions

• “BD” today: Spark
• Still supporting user-defined functions, but more

standard relational operators than older “BD” systems
• More automatic optimization than older “BD” systems
• No updates/transactions

21

Practice Problem:

22

Example problem: Parallel DBMS
R(a,b) is “horizontally partitioned” across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R.

The tuples are randomly organized across machines (in no particular
order).

Show a RA plan for this query and how it will be executed across the N =
3 machines.

Pick an efficient plan that leverages the parallelism as much as possible.

• SELECT a, max(b) as topb
• FROM R
• WHERE a > 0
• GROUP BY a

23

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)
24

4/23/2019

5

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

If more than one relation on a machine, then “scan S”, “scan R” etc

25

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

a>0 a>0 a>0

26

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

a>0 a>0 a>0

a, max(b)->
b

a, max(b)->
b

a, max(b)->
b

27

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

a>0 a>0 a>0

a, max(b)->
b

a, max(b)->
b

a, max(b)->
b

Hash on a Hash on a Hash on a

28

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aR(a, b)

scan scan scan

a>0 a>0 a>0

a, max(b)->
b

a, max(b)->
b

a, max(b)->
b

Hash on a Hash on a Hash on a

29

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aR(a, b)

scan scan scan

a>0 a>0 a>0

a, max(b)->
b

a, max(b)->
b

a, max(b)->
b

Hash on a Hash on a Hash on a

a, max(b)-
>topb

a, max(b)-
>topb

a, max(b)-
>topb

30

4/23/2019

6

Benefit of hash-partitioning

• What would change if we hash-partitioned R on R.a
before executing the same query on the previous
parallel DBMS and MR

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a

31

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aPrev: block-partition

scan scan scan

a>0 a>0 a>0

a, max(b)->
b

a, max(b)->
b

a, max(b)->
b

Hash on a Hash on a Hash on a

a, max(b)-
>topb

a, max(b)-
>topb

a, max(b)-
>topb

32

• It would avoid the data re-shuffling phase
• It would compute the aggregates locally

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a

33
Hash-partition on a for R(a, b)

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aHash-partition on a for R(a, b)

scan scan scan

a>0 a>0 a>0

a, max(b)-
>topb

a, max(b)-
>topb

a, max(b)-
>topb

34

Any benefit of hash-partitioning
for Map-Reduce?
• For MapReduce

• Logically, MR won’t know that the data is hash-
partitioned

• MR treats map and reduce functions as black-boxes and
does not perform any optimizations on them

• But, if a local combiner is used
• Saves communication cost:

• fewer tuples will be emitted by the map tasks
• Saves computation cost in the reducers:

• the reducers would have to do anything

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a

35

Distributed Data Processing

36

• Distributed replication & updates
• Distributed join (Semijoin)
• Distributed Recovery (2-phase commit)

4/23/2019

7

1. Distributed replication and updates

• Relations are stored across several sites
• Accessing data at a remote site incurs message-passing costs

• A single relation may be divided into smaller fragments
and/or replicated
• Fragmented - typically at sites where they are most often

accessed
• Horizontal partition: E.g. SELECT on city to store employees in the

same city locally
• Vertical partition: store some columns along with id (lossless?)

• Replicated – when the relation is in high demand or for better
fault tolerance

37

t1
t2
t3
t4

Updating Distributed Data
• Synchronous Replication: All copies of a modified relation must

be updated before the modifying transaction commits
• Voting: write a majority of copies, read enough

• E.g. 10 copies, write any 7, read any 4 (why 4? Why read < write?)
• Read any write all : read any copy, write all

• Expensive remote lock requests, expensive commit protocol

• Asynchronous Replication: Copies of a modified relation are
only periodically updated; different copies may get out of sync
in the meantime
• Users must be aware of data distribution
• More efficient – many current products follow this approach
• E.g. Have one primary copy (updateable), multiple secondary

copies(not updateable, changes propagate eventually)

38

2. Distributed join -- Semijoin
• Suppose want to ship R to London and then do join with S at

London. May require unnecessary shipping.
• Instead,
1. At London, project S onto join columns and ship this to Paris

• Here foreign keys, but could be arbitrary join

2. At Paris, join S-projection with R
• Result is called reduction of Reserves w.r.t. Sailors (only these tuples are

needed)

3. Ship reduction of R to back to London
4. At London, join S with reduction of R

LONDON PARIS

500 pages 1000 pages

Sailors (S) Reserves (R)

39

Semijoin – contd.

• Tradeoff the cost of computing and shipping
projection for cost of shipping full R relation

• Especially useful if there is a selection on Sailors, and
answer desired at London

LONDON PARIS

500 pages 1000 pages

Sailors (S) Reserves (R)

40

3. Distributed Recovery (details
skipped)
• Two new issues:

• New kinds of failure, e.g., links and remote sites
• If “sub-transactions” of a transaction execute at

different sites, all or none must commit
• Need a commit protocol to achieve this
• Most widely used: Two Phase Commit (2PC)

• A log is maintained at each site
• as in a centralized DBMS
• commit protocol actions are additionally logged
• One coordinator and rest subordinates for each

transaction
• Transaction can commit only if *all* sites vote to commit

41

Parallel vs. Distributed DBMS?

42

4/23/2019

8

Parallel vs. Distributed DBMS
Parallel DBMS

• Parallelization of various
operations
• e.g. loading data, building

indexes, evaluating
queries

• Data may or may not be
distributed initially

• Distribution is governed
by performance
consideration

43

Distributed DBMS

• Data is physically stored across
different sites
– Each site is typically managed by

an independent DBMS

• Location of data and autonomy of
sites have an impact on Query
opt., Conc. Control and recovery

• Also governed by other factors:
– increased availability for system

crash
– local ownership and access

