Parallel Data Processing

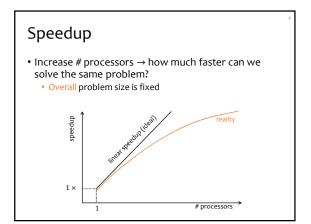
Introduction to Databases CompSci 316 Spring 2019

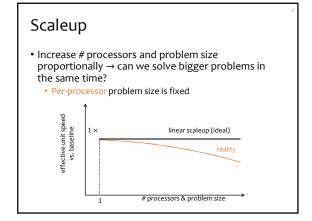
Announcements (Thu., Apr. 18)

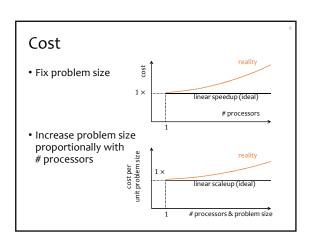
- Final project demo between April 29 (Mon)-May 1 (Wed)
 - If anyone in your group is unavailable during these dates and want to present your demo early please let Sudeepa and Zhengjie know ASAP!
- Homework #4 final due dates
 - Problem 3: today 04/16
 - Problems 4, 5, 6 : next Monday 04/22
 - Problem X1: next Wednesday 04/24

Parallel processing

- Improve performance by executing multiple operations in parallel
- Cheaper to scale than relying on a single increasingly more powerful processor
- Performance metrics
 - Speedup, in terms of completion time
 - Scaleup, in terms of time per unit problem size
 - Cost: completion time × # processors × (cost per processor per unit time)



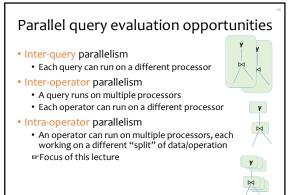




Why linear speedup/scaleup is hard

Why linear speedup/scaleup is hard

- Startup
 - Overhead of starting useful work on many processors
- Communication
 - Cost of exchanging data/information among processors
- Interference
 - Contention for resources among processors
- Skew
 - Slowest processor becomes the bottleneck



Parallel DBMS

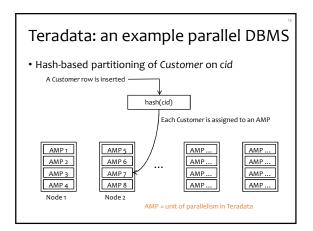
E.g.: **TERADATA**

Horizontal data partitioning

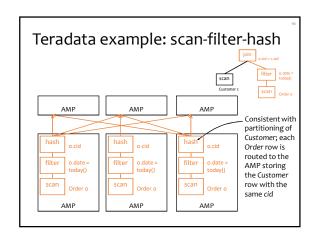
- ullet Split a table ${\it R}$ into ${\it p}$ chunks, each stored at one of the ${\it p}$ processors
- Splitting strategies?

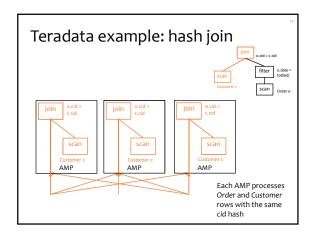
Horizontal data partitioning

- Split a table *R* into *p* chunks, each stored at one of the *p* processors
- Splitting strategies:
 - Round robin assigns the i-th row assigned to chunk (i mod p)
 - Hash-based partitioning on attribute A assigns row r to chunk $(h(r.A) \bmod p)$
 - Range-based partitioning on attribute A partitioning the range of R. A values into p ranges, and assigns row r to the chunk whose corresponding range contains r. A



• Find all orders today, along with the customer info SELECT * FROM Order o, Customer c WHERE o.cid = c.cid AND o.date = today(); Join o.cid = c.cid o.date = today() customer c Order o





Parallel DBMS vs. MapReduce?

Parallel DBMS vs. MapReduce

- Parallel DBMS
 - Schema + intelligent indexing/partitioning
 - Can stream data from one operator to the next
 - SQL + automatic optimization
- MapReduce
 - · No schema, no indexing
 - Higher scalability and elasticity
 - Just throw new machines in!
 - Better handling of failures and stragglers
 - Black-box map/reduce functions \rightarrow hand optimization

A brief tour of three approaches

- "DB": parallel DBMS, e.g., Teradata
 - Same abstractions (relational data model, SQL, transactions) as a regular DBMS
 - · Parallelization handled behind the scene
- "BD (Big Data)" 10 years go: MapReduce, e.g., Hadoop
 - Easy scaling out (e.g., adding lots of commodity servers) and failure handling
 - Input/output in files, not tables
 - Parallelism exposed to programmers
- "BD" today: Spark
 - Compared to MapReduce: smarter memory usage, recovery, and optimization
 - Higher-level DB-like abstractions (but still no updates)

Summary

- "DB": parallel DBMS
 - Standard relational operators
 - Automatic optimization
 - Transactions
- "BD" 10 years go: MapReduce
 - User-defined map and reduce functions
 - Mostly manual optimization
 - No updates/transactions
- "BD" today: Spark
 - Still supporting user-defined functions, but more standard relational operators than older "BD" systems
 - More automatic optimization than older "BD" systems
 - No updates/transactions

Practice Problem:

Example problem: Parallel DBMS

R(a,b) is "horizontally partitioned" across N=3 machines.

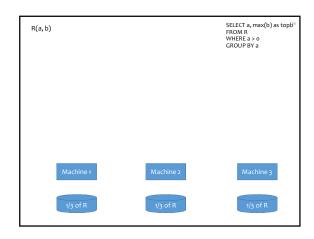
Each machine locally stores approximately 1/N of the tuples in R.

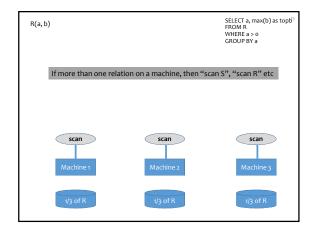
The tuples are randomly organized across machines (in no particular order).

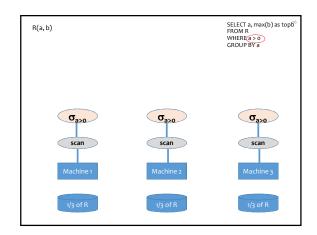
Show a RA plan for this query and how it will be executed across the N = $_3$ machines.

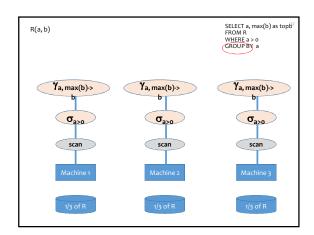
Pick an efficient plan that leverages the parallelism as much as possible.

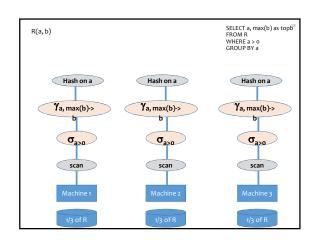
- SELECT a, max(b) as topb
- FROM R
- WHERE a > o
- GROUP BY a

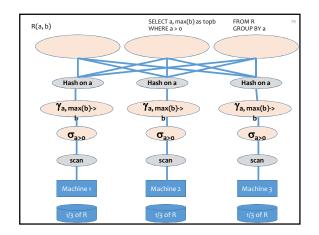


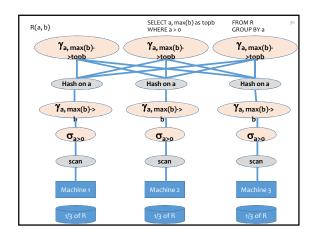






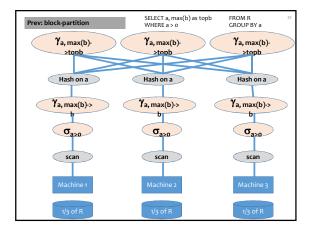






SELECT a, max(b) as topb FROM R Benefit of hash-partitioning

• What would change if we hash-partitioned R on R.a before executing the same query on the previous parallel DBMS and MR

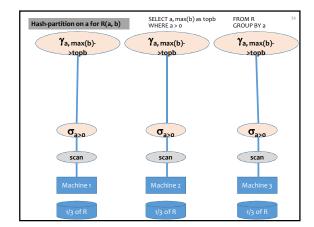


Hash-partition on a for R(a, b)

SELECT a, max(b) as toplo FROM R WHERE a > 0 GROUP BY a

WHERE a > 0 GROUP BY a

- It would avoid the data re-shuffling phase
- It would compute the aggregates locally



Any benefit of hash-partitioning SELECT a, max(b) as topb FROM R for Map-Reduce?

WHERE a > 0 GROUP BY a

For MapReduce

- Logically, MR won't know that the data is hash-partitioned
- MR treats map and reduce functions as black-boxes and does not perform any optimizations on them
- But, if a local combiner is used
 - Saves communication cost:
 - fewer tuples will be emitted by the map tasks
 - Saves computation cost in the reducers:
 - · the reducers would have to do anything

Distributed Data Processing

- Distributed replication & updates
- Distributed join (Semijoin)
- Distributed Recovery (2-phase commit)

Distributed replication and updates Relations are stored across several sites Accessing data at a remote site incurs message-passing costs

- A single relation may be divided into smaller fragments and/or replicated
 - Fragmented typically at sites where they are most often accessed
 - Horizontal partition: E.g. SELECT on city to store employees in the same city locally
 - Vertical partition: store some columns along with id (lossless?)
 Replicated when the relation is in high demand or for better fault tolerance.

fault tolerance

Updating Distributed Data

- Synchronous Replication: All copies of a modified relation must be updated before the modifying transaction commits
 - Voting: write a majority of copies, read enough
 - E.g. 10 copies, write any 7, read any 4 (why 4? Why read < write?)
 - Read any write all : read any copy, write all
 - · Expensive remote lock requests, expensive commit protocol
- Asynchronous Replication: Copies of a modified relation are only periodically updated; different copies may get out of sync in the meantime
 - · Users must be aware of data distribution
 - · More efficient many current products follow this approach
 - E.g. Have one primary copy (updateable), multiple secondary copies(not updateable, changes propagate eventually)

2. Distributed join -- Semijoin Suppose want to ship R to London and then do join with S at London. May require unnecessary shipping. Instead, At London, project S onto join columns and ship this to Paris Here foreign keys, but could be arbitrary join At Paris, join S-projection with R Result is called reduction of Reserves w.r.t. Sailors (only these tuples are needed) Ship reduction of R to back to London At London, join S with reduction of R LONDON PARIS Sailors (S) Reserves (R)

• Tradeoff the cost of computing and shipping projection for cost of shipping full R relation • Especially useful if there is a selection on Sailors, and answer desired at London LONDON PARIS Sailors (S) Reserves (R) 1000 pages

3. Distributed Recovery (details skipped)

- Two new issues:
 - New kinds of failure, e.g., links and remote sites
 - If "sub-transactions" of a transaction execute at different sites, all or none must commit
 - Need a commit protocol to achieve this
 - Most widely used: Two Phase Commit (2PC)
- A log is maintained at each site
 - as in a centralized DBMS
 - commit protocol actions are additionally logged
 - One coordinator and rest subordinates for each transaction
 - Transaction can commit only if *all* sites vote to commit

Parallel vs. Distributed DBMS?

Parallel vs. Distributed DBMS

Parallel DBMS

- Parallelization of various operations
 e.g. loading data, building indexes, evaluating queries
- Data may or may not be distributed initially
- Distribution is governed by performance consideration

Distributed DBMS

- Data is physically stored across different sites Each site is typically managed by an independent DBMS
- Location of data and autonomy of sites have an impact on Query opt., Conc. Control and recovery
- Also governed by other factors:
 increased availability for system crash
- local ownership and access