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Announcements (Tue., Apr. 23)

• Homework #4 extra credit X1 due tomorrow
• Sample solutions to be posted soon

• Project demos
• If you have not replied to Zhengjie, please do asap
• Submit draft report/code before your scheduled slot (sakai)
• No more weekly progress update needed
• Final report due by May 2 (Thursday) 12 noon

• Final exam Fri. May 3 2-5pm
• This room
• Open-book, open-notes
• Comprehensive, but with strong emphasis on the second half of the 

course
• Sample final + solution will be posted on Sakai

• Course evals: your feedback is immensely important for the 
class. 
• hit 14/18 and you all will earn 2 free points on the final exam. hit 

17/18 and you all will earn 4 free points on the final exam. 
• Deadline is this Saturday, April 27th (11:59 pm)
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Data mining

• Data → knowledge

• DBMS meets AI and statistics

• Clustering, prediction (classification and 
regression), association analysis, outlier analysis, 
evolution analysis, etc.
• Usually complex statistical “queries” that are difficult to 

answer → often specialized algorithms outside DBMS

• We will focus on frequent itemset mining, as a 
sample problem in data mining
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Mining frequent itemsets

• Given: a large database of  
transactions, each 
containing a set of items
• Example: market baskets

• Find all frequent itemsets
• A set of items 𝑋 is frequent 

if no less than 𝑠𝑚𝑖𝑛% of all 
transactions contain 𝑋

• Examples: {diaper, beer}, 
{scanner, color printer}

• Why should we care about 
this problem?
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TID items

T001 diaper, milk, candy

T002 milk, egg

T003 milk, beer

T004 diaper, milk, egg

T005 diaper, beer

T006 milk, beer

T007 diaper, beer

T008 diaper, milk, beer, candy

T009 diaper, milk, beer

… …



First try

• A naïve algorithm
• Keep a running count for each possible itemset

• For each transaction 𝑇, and for each itemset 𝑋, if 𝑇
contains 𝑋 then increment the count for 𝑋

• Return itemsets with large enough counts

• Problem: The number of itemsets is huge!
• 2𝑛, where 𝑛 is the number of items

• Think: How do we prune the search space?
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The Apriori property

• All subsets of a frequent itemset must also be 
frequent
• Because any transaction that contains 𝑋 must also 

contains subsets of 𝑋

☞If we have already verified that 𝑋 is infrequent, 
there is no need to count 𝑋’s supersets because 
they must be infrequent too
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The Apriori algorithm

Multiple passes over the transactions

• Pass 𝑘 finds all frequent 𝑘-itemsets (i.e., itemsets of 
size 𝑘)

• Use the set of frequent 𝑘-itemsets found in pass 𝑘
to construct candidate 𝑘 + 1 -itemsets to be 
counted in pass 𝑘 + 1
• A 𝑘 + 1 -itemset is a candidate “only if” all its subsets 

of size 𝑘 are frequent

• Also “if..”?
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Example: pass 1
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Transactions

𝑠𝑚𝑖𝑛% = 20%

Frequent 1-itemsets

(Itemset {F} is infrequent)

TID items

T001 A, B, E

T002 B, D

T003 B, C

T004 A, B, D

T005 A, C

T006 B, C

T007 A, C

T008 A, B, C, E

T009 A, B, C

T010 F

itemset count

{A} 6

{B} 7

{C} 6

{D} 2

{E} 2



Example: pass 2
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Scan and
count

Frequent
2-itemsets

Check
min. support

Transactions

𝑠𝑚𝑖𝑛% = 20%

TID items

T001 A, B, E

T002 B, D

T003 B, C

T004 A, B, D

T005 A, C

T006 B, C

T007 A, C

T008 A, B, C, E

T009 A, B, C

T010 F

Frequent
1-itemsets

itemset count

{A} 6

{B} 7

{C} 6

{D} 2

{E} 2

itemset

{A,B}

{A,C}

{A,D}

{A,E}

{B,C}

{B,D}

{B,E}

{C,D}

{C,E}

{D,E}

itemset count

{A,B} 4

{A,C} 4

{A,E} 2

{B,C} 4

{B,D} 2

{B,E} 2

itemset count

{A,B} 4

{A,C} 4

{A,D} 1

{A,E} 2

{B,C} 4

{B,D} 2

{B,E} 2

{C,D} 0

{C,E} 1

{D,E} 0



Example: pass 3
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itemset

{A,B,C}

{A,B,E}

Frequent
2-itemsets

Candidate
3-itemsets

Generate
candidates

Scan and
count

Check
min. support

Frequent
3-itemsets

Transactions

𝑠𝑚𝑖𝑛% = 20%

TID items

T001 A, B, E

T002 B, D

T003 B, C

T004 A, B, D

T005 A, C

T006 B, C

T007 A, C

T008 A, B, C, E

T009 A, B, C

T010 F

itemset count

{A,B} 4

{A,C} 4

{A,E} 2

{B,C} 4

{B,D} 2

{B,E} 2

itemset count

{A,B,C} 2

{A,B,E} 2

itemset count

{A,B,C} 2

{A,B,E} 2



Example: pass 4
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Frequent
3-itemsets

Candidate
4-itemsets

Generate
candidates

No more itemsets to count!

Transactions

𝑠𝑚𝑖𝑛% = 20%

TID items

T001 A, B, E

T002 B, D

T003 B, C

T004 A, B, D

T005 A, C

T006 B, C

T007 A, C

T008 A, B, C, E

T009 A, B, C

T010 F

itemset count

{A,B,C} 2

{A,B,E} 2

itemset count



Example: final answer
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Frequent
1-itemsets Frequent

2-itemsets

Frequent
3-itemsets

itemset count

{A} 6

{B} 7

{C} 6

{D} 2

{E} 2

itemset count

{A,B} 4

{A,C} 4

{A,E} 2

{B,C} 4

{B,D} 2

{B,E} 2

itemset count

{A,B,C} 2

{A,B,E} 2



Summary

• Only covered frequent itemset counting

• Skipped many other techniques (clustering, 
classification, regression, etc.)

• Compared with statistics and machine learning: 
more focus on massive datasets and I/O-efficient 
algorithms
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Relational basics

• Relational model + query languages: physical data 
independence

• Relation algebra (set semantics)

• SQL (bag semantics by default)

• Schema design
• Entity-relationship design

• Theory (FD’s, MVD’s, BNCF, 4NF): help eliminate 
redundancy
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More about SQL

• NULL and three-valued logic: nifty but messy

• Bag vs. set: beware of broken equivalences

• SELECT-FROM-WHERE (SPJ)

• Grouping, aggregation, ordering

• Subqueries (including correlated ones)

• Modifications

• Constraints: the more you know the better

• Triggers (ECA): “active” data

• Index: reintroduce redundancy for performance

• Transactions and isolation levels
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Semi-structured data

• Data models
• XML: well-formed vs. DTD (or even XML Schema)
• JSON: may be getting a schema too!

• Query languages:
• XPath: (branching) path expressions (with conditions)

• Be careful about the semantics of overloaded operators on sets

• XQuery: FLWOR, subqueries in return (restructuring output), 
quantified expressions, aggregation, ordering

• MongoDB find() and aggregate()

• Relational vs. XML/JSON
• Tables vs. hierarchies

• Flat vs. nested

• Highly structured/typed vs. less
• Joins vs. path traversals
• Storing hierarchies as relations: various mapping methods
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Physical data organization

• Storage hierarchy (DC vs. Pluto): so count I/Os!

• Hard drives: geometry → three components of access 
cost; random vs. sequential I/O

• Solid state drives: faster, but still slower than memory 
and still block-oriented access

• Data layout by row vs. by column
• Different types of locality; columns easier to compress

• Access paths (indexing)
• Clustered vs. unclustered, Primary vs. secondary; sparse vs. 

dense, Tree vs. Hash (works very well for equality search, 
prefix does not work)

• Tree-based indexes: ISAM, B+-tree
• Big fan-out: do as much as you can with one I/O

• Again, reintroduce redundancy to improve performance, but 
keep in mind the query vs. update cost trade-off
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Query processing & optimization

• Processing
• Scan-, sort-, hash-, and index-based algorithms

• Do as much as you can with each I/O
• Manage memory very carefully

• Pipelined execution vs. materialization

• Optimization (or “goodification”)
• Heuristics: push selections down; smaller joins first

• Reduce the size of intermediate results

• Cost-based
• Query rewrite: de-correlate and merge query blocks to expand 

search space
• Cost estimation: comes down to estimating size of intermediate 

results; statistics + assumptions
• Search algorithms: greedy vs. dynamic programming (with 

interesting orders)
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Parallel data processing

• Various performance metrics, sources of parallelism

• “Data Base” (e.g., Teradata) vs. “Big Data” (e.g., 
MapReduce, Spark) systems, and possible 
convergence

• Key ideas from Spark
• Fewer black-box functions, more DB-style operators

• Optimize both the execution plan (DB-style) and 
execution code (compiler-style)

• RDD: use memory across the entire cluster to avoid 
going to Pluto altogether, but work failures must be 
handled more intelligently (by tracking lineage)
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Distributed data processing and DM

• Distributed
• Fragmented, replicated, synchronous vs. asynchronous 

replication, semi-join

• Data mining
• Apriori algorithm

• Look at all in-class and in-slide practice problems

• Ask questions on piazza
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Practice problem#1 : Transaction

• R2(X);R1(X);W2(Y);R2(Z);R1(Y);W2(Z);C2;W1(X);C1

• Is it recoverable?

• Does it avoid cascading aborts?
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Practice problem-1 : Transaction (SOL)

• R2(X);R1(X);W2(Y);R2(Z);R1(Y);W2(Z);C2;W1(X);C1

• Is it recoverable?
• Recoverable = Each transaction commits after all 

transactions from which it has read has committed.

• Yes, T1 commits after T2 (Y).

• Does it avoid cascading aborts?
• Avoids Cascading Rollback = Each transaction reads only 

data written by committed transactions.

• No, T1 read data R1(Y) written by T2 in W2(Y) before T2 
committed.
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Practice Problem#2 – Join/Index

Consider the following two relations from Q1 with the stated assumptions:

• Athlete(aid, aname, country): 

no. of tuples T1 = 20,000; no. of pages N1 = 100.

• Played(aid, eid, rank): 

no. of tuples T2 = 5000; no. of pages N2 = 50.

• Assume that the no. of memory pages available is B = 12.

• Assume all index pages are in memory.

• Assume roughly 20 athletes participated in each event

• Ignore page boundaries (??)

Consider the following query
SELECT * FROM Athlete A, Played P WHERE A.aid = P.aid

Consider Index nested loop join with Played as outer.

Consider Clustered B+-index on Athlete(aid).

Write the estimated cost (in terms of I/O, initially relations are on disk, ignore final 
write).
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Practice Problem#2 – Join/Index (Sol)

• Given a Played tuple there is exactly one matching 
Athlete tuple! Fits in one page
• Because this is foreign key join, clustered and 

unclustered costs are the same

• only 1 I/O is needed

• Cost is N2+T2 * 1 = 50 + 5000 * 1 = 5050

• What to do for arbitrary joins?
• If for an inner relation R 20k tuples and 100 pages, a 

page of R can hold 200 > 20 tuples, still fits in one page
• note that page boundary is ignored, otherwise 2 I/O
• We assume uniformity wherever needed
• For unclustered, 50 + 5000 * 20
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