(A Glimpse of) Data Mining

Introduction to Databases

CompSci 316 Spring 2019

DUKE

Announcements (Tue., Apr. 23)

- Homework \#4 extra credit X1 due tomorrow
- Sample solutions to be posted soon
- Project demos
- If you have not replied to Zhengjie, please do asap
- Submit draft report/code before your scheduled slot (sakai)
- No more weekly progress update needed
- Final report due by May 2 (Thursday) 12 noon
- Final exam Fri. May 3-5pm
- This room
- Open-book, open-notes
- Comprehensive, but with strong emphasis on the second half of the course
- Sample final + solution will be posted on Sakai
- Course evals: your feedback is immensely important for the class.
- hit $14 / 18$ and you all will earn 2 free points on the final exam. hit $17 / 18$ and you all will earn 4 free points on the final exam.
- Deadline is this Saturday, April $27^{\text {th }}$ ($11: 59 \mathrm{pm}$)

Data mining

- Data \rightarrow knowledge
- DBMS meets AI and statistics
- Clustering, prediction (classification and regression), association analysis, outlier analysis, evolution analysis, etc.
- Usually complex statistical "queries" that are difficult to answer \rightarrow often specialized algorithms outside DBMS
- We will focus on frequent itemset mining, as a sample problem in data mining

Mining frequent itemsets

- Given: a large database of transactions, each containing a set of items
- Example: market baskets
- Find all frequent itemsets
- A set of items X is frequent if no less than $s_{\text {min }} \%$ of all transactions contain X
- Examples: \{diaper, beer\}, \{scanner, color printer\}
- Why should we care about this problem?

TID	items
To01	diaper, milk, candy
To02	milk, egg
To03	milk, beer
To04	diaper, milk, egg
To05	diaper, beer
To06	milk, beer
To07	diaper, beer
To08	diaper, milk, beer, candy
To09	diaper, milk, beer
\ldots	\ldots

First try

- A naïve algorithm
- Keep a running count for each possible itemset
- For each transaction T, and for each itemset X, if T contains X then increment the count for X
- Return itemsets with large enough counts
- Problem: The number of itemsets is huge!
- 2^{n}, where n is the number of items
- Think: How do we prune the search space?

The Apriori property

- All subsets of a frequent itemset must also be frequent
- Because any transaction that contains X must also contains subsets of X

If we have already verified that X is infrequent, there is no need to count X 's supersets because they must be infrequent too

The Apriori algorithm

Multiple passes over the transactions

- Pass k finds all frequent k-itemsets (i.e., itemsets of size k)
- Use the set of frequent k-itemsets found in pass k to construct candidate $(k+1)$-itemsets to be counted in pass $(k+1)$
- A $(k+1)$-itemset is a candidate "only if" all its subsets of size k are frequent
- Also "if.."?

Example: pass 1

TlD	items
To01	A, B, E
To02	B, D
To03	B, C
To04	A, B, D
To05	A, C
Too6	B, C
To07	A, C
Too8	A, B, C, E
To09	A, B, C
To10	F

Transactions

$$
s_{\min } \%=20 \%
$$

itemset	count
$\{A\}$	6
$\{B\}$	7
$\{C\}$	6
$\{D\}$	2
$\{E\}$	2

Frequent 1-itemsets
(Itemset $\{F\}$ is infrequent)

Example: pass 2

TID	items
To01	A, B, E
To02	B, D
To03	B, C
To04	A, B, D
T005	A, C
Too6	B, C
To07	A, C
To08	A, B, C, E
To09	A, B, C
T010	F

itemset	count
$\{A\}$	6
$\{B\}$	7
$\{C\}$	6
$\{D\}$	2
$\{E\}$	2

Frequent 1-itemsets

Transactions

$$
s_{\min } \%=20 \%
$$

Scan and count min. support

itemset	count
$\{A, B\}$	4
$\{A, C\}$	4
$\{A, D\}$	1
$\{A, E\}$	2
$\{B, C\}$	4
$\{B, D\}$	2
$\{B, E\}$	2
$\{C, D\}$	0
$\{C, E\}$	1
$\{D, E\}$	0

Check

itemset	count
$\{A, B\}$	4
$\{A, C\}$	4
$\{A, E\}$	2
$\{B, C\}$	4
$\{B, D\}$	2
$\{B, E\}$	2

Frequent 2-itemsets

Example: pass 3

TID	items
To01	A, B, E
To02	B, D
To03	B, C
To04	A, B, D
T005	A, C
To06	B, C
To07	A, C
Too8	A, B, C, E
To09	A, B, C
T010	F

Transactions
$s_{\min } \%=20 \%$

itemset	count
$\{A, B\}$	4
$\{A, C\}$	4
$\{A, E\}$	2
$\{B, C\}$	4
$\{B, D\}$	2
$\{B, E\}$	2

itemset	count				
$\{A, B\}$	4				
$\{A, C\}$	4				
$\{A, E\}$	itemset	count			
$\{A, B, C\}$	2				
$\{A, B, E\}$	2		\quad	itemset	count
:---	:---	:---			
$\{A, B, C\}$	2				
$\{A, B, E\}$	2				

Candidate 3-itemsets

Check
candidates count min.support

Frequent
3-itemsets

Frequent
2-itemsets

Example: pass 4

TID	items
To01	A, B, E
To02	B, D
To03	B, C
To04	A, B, D
T005	A, C
To06	B, C
To07	A, C
To08	A, B, C, E
To09	A, B, C
T010	F

Generate
candidates

itemset	count
$\{A, B, C\}$	2
$\{A, B, E\}$	2

Frequent 3-itemsets

itemset count

Candidate 4-itemsets

No more itemsets to count!

Transactions

$$
s_{\min } \%=20 \%
$$

Example: final answer

itemset	count
$\{A\}$	6
$\{B\}$	7
$\{C\}$	6
$\{D\}$	2
$\{E\}$	2

Frequent
1-itemsets

itemset	count
$\{A, B\}$	4
$\{A, C\}$	4
$\{A, E\}$	2
$\{B, C\}$	4
$\{B, D\}$	2
$\{B, E\}$	2

Frequent
2-itemsets

itemset	count
$\{A, B, C\}$	2
$\{A, B, E\}$	2

Frequent 3-itemsets

Summary

- Only covered frequent itemset counting
- Skipped many other techniques (clustering, classification, regression, etc.)
- Compared with statistics and machine learning: more focus on massive datasets and I/O-efficient algorithms

Relational basics

- Relational model + query languages: physical data independence
- Relation algebra (set semantics)
- SQL (bag semantics by default)
- Schema design
- Entity-relationship design
- Theory (FD's, MVD's, BNCF, 4NF): help eliminate redundancy

More about SQL

- NULL and three-valued logic: nifty but messy
- Bag vs. set: beware of broken equivalences
- SELECT-FROM-WHERE (SPJ)
- Grouping, aggregation, ordering
- Subqueries (including correlated ones)
- Modifications
- Constraints: the more you know the better
- Triggers (ECA): "active" data
- Index: reintroduce redundancy for performance
- Transactions and isolation levels

Semi-structured data

- Data models
- XML: well-formed vs. DTD (or even XML Schema)
- JSON: may be getting a schema too!
- Query languages:
- XPath: (branching) path expressions (with conditions)
- Be careful about the semantics of overloaded operators on sets
- XQuery: FLWOR, subqueries in return (restructuring output), quantified expressions, aggregation, ordering
- MongoDB find() and aggregate()
- Relational vs. XML/JSON
- Tables vs. hierarchies
- Flat vs. nested
- Highly structured/typed vs. less
- Joins vs. path traversals
- Storing hierarchies as relations: various mapping methods

Physical data organization

- Storage hierarchy (DC vs. Pluto): so count I/Os!
- Hard drives: geometry \rightarrow three components of access cost; random vs. sequential I/O
- Solid state drives: faster, but still slower than memory and still block-oriented access
- Data layout by row vs. by column
- Different types of locality; columns easier to compress
- Access paths (indexing)
- Clustered vs. unclustered, Primary vs. secondary; sparse vs. dense, Tree vs. Hash (works very well for equality search, prefix does not work)
- Tree-based indexes: ISAM, B+-tree
- Big fan-out: do as much as you can with one I/O
- Again, reintroduce redundancy to improve performance, but keep in mind the query vs. update cost trade-off

Query processing \& optimization

- Processing
- Scan-, sort-, hash-, and index-based algorithms
- Do as much as you can with each I/O
- Manage memory very carefully
- Pipelined execution vs. materialization
- Optimization (or "goodification")
- Heuristics: push selections down; smaller joins first
- Reduce the size of intermediate results
- Cost-based
- Query rewrite: de-correlate and merge query blocks to expand search space
- Cost estimation: comes down to estimating size of intermediate results; statistics + assumptions
- Search algorithms: greedy vs. dynamic programming (with interesting orders)

Parallel data processing

- Various performance metrics, sources of parallelism
- "Data Base" (e.g., Teradata) vs. "Big Data" (e.g., MapReduce, Spark) systems, and possible convergence
- Key ideas from Spark
- Fewer black-box functions, more DB-style operators
- Optimize both the execution plan (DB-style) and execution code (compiler-style)
- RDD: use memory across the entire cluster to avoid going to Pluto altogether, but work failures must be handled more intelligently (by tracking lineage)

Distributed data processing and DM

- Distributed
- Fragmented, replicated, synchronous vs. asynchronous replication, semi-join
- Data mining
- Apriori algorithm
- Look at all in-class and in-slide practice problems
- Ask questions on piazza

Practice problem\#1 : Transaction

- R2(X);R1(X);W2(Y);R2(Z);R1(Y);W2(Z);C2;W1(X);C1
- Is it recoverable?
- Does it avoid cascading aborts?

Practice problem-1: Transaction (SOL)

- R2(X);R1(X);W2(Y);R2(Z);R1(Y);W2(Z);C2;W1(X);C1
- Is it recoverable?
- Recoverable = Each transaction commits after all transactions from which it has read has committed.
- Yes, T1 commits after T2 (Y).
- Does it avoid cascading aborts?
- Avoids Cascading Rollback = Each transaction reads only data written by committed transactions.
- No, T1 read data R1 (Y) written by T_{2} in $\mathrm{W} 2(\mathrm{Y})$ before T 2 committed.

Practice Problem\#2 - Join/Index

Consider the following two relations from Q1 with the stated assumptions:

- Athlete(aid, aname, country):
no. of tuples $\mathrm{T} 1=20,000$; no. of pages $\mathrm{N} 1=100$.
- Played(aid, eid, rank):
no. of tuples $\mathrm{T}_{2}=5000$; no. of pages $\mathrm{N} 2=50$.
- Assume that the no. of memory pages available is $\mathrm{B}=12$.
- Assume all index pages are in memory.
- Assume roughly 20 athletes participated in each event
- Ignore page boundaries (??)

Consider the following query
SELECT * FROM Athlete A, Played P WHERE A.aid = P.aid
Consider Index nested loop join with Played as outer.
Consider Clustered B+-index on Athlete(aid).
Write the estimated cost (in terms of $I / 0$, initially relations are on disk, ignore final write).

Practice Problem\#2 - Join/Index (Sol)

- Given a Played tuple there is exactly one matching Athlete tuple! Fits in one page
- Because this is foreign key join, clustered and unclustered costs are the same
- only $1 \mathrm{I} / \mathrm{O}$ is needed
- Cost is $\mathrm{N} 2+\mathrm{T} 2 * 1=50+5000 * 1=5050$
-What to do for arbitrary joins?
- If for an inner relation R 20k tuples and 100 pages, a page of R can hold $200>20$ tuples, still fits in one page
- note that page boundary is ignored, otherwise 2 I/O
- We assume uniformity wherever needed
- For unclustered, $50+5000$ * 20

